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Preamble
About the Crypto Asset Service Provider (CASP)

Name of the CASP: Smartbroker AG
Street and number: Ritterstralde 11
City: Berlin

Country: Germany

LEl: 391200NOBYCZF2F43264

About this report

This disclosure serves as evidence of compliance with the regulatory requirements of MiCAR 66 (5).
This requirement obliges crypto asset service providers to disclose significant adverse factors
affecting the climate and the environment. In particular, this disclosure complies with the
requirements of “Commission Regulation (EU) 2025/422 of December 17, 2024, supplementing
Regulation (EU) 2023/1114 of the European Parliament and of the Council with regard to regulatory
technical standards specifying the content, methods and presentation of information relating to
sustainability indicators related to climate-related and other environmental impacts.” The optional
information specified in Article 6, par. 8 (a) to (d) DR 2025/422 is not included.

This report is valid until material changes occur in the data, which will result in an immediate
adjustment of this report.

Overview

This is an overview of the core indicator energy consumption but does not represent the reporting
according to MiCAR 66 (5). Please find the full disclosure below.

# |Crypto-Asset Name [Crypto-Asset FFG | Energy consumption (kWh per calendar year)
1 |Bitcoin V15WLZJMF 191,640,969,165.98
2 |Dogecoin 35PLJP6)7 13,158,311,899.92
3 |Litecoin D74JZ1VRD 1,572,647,253.70
4 |Bitcoin Cash 919BF3W7L 834,897,735.75
5 [Solana SOL 6QZ1LNC12 6,345,525.00
6 |Ethereum Eth D5RG2FHHO 2,168,888.40
7 |NEAR Protocol MXXM59Z0T 920,029.48
8 |Avalanche AVAX S6JCBF70N 829,651.29
9 |Cardano ADA 76QS7QCXB 785,509.20
10 [Polkadot DOT SGDONLTRG 630,742.12
11 [Algorand K8SeW74KS 420,961.80
12 |Sui 64RFW3D8P 384,739.20
13 [Ripple XRP 42PH|B2BS 299,664.02
14 |Injective Token 92M9B0DZ7 237,281.40
15 [Polygon POL GB8DQ8DWN 92,401.98

Sustainability indicators according to MiCAR 66 (5)




# [Crypto-Asset Name |Crypto-Asset FFG | Energy consumption (kWh per calendar year)
16 |Fantom GRLPKO2K7 78,840.00
17 |Stellar Lumen ZCN8SR2H7 52,560.00
18| Chiliz KNSO6KRXQ 23,276.78
19| ChainLink Token 3R3J70FDR 11,201.16
20|Curve DAO Token P8DXFQ5LD 8,129.21
21 |Uniswap XMB84LzBZ 6,837.83
22 |SHIBA INU MAHFTENPC 5,674.60
23 |Aave Token H618RN577 5,203.42
24| Axie Infinity Shard RTTDS5MHT 3,077.56
25]1INCH Token SVRFHQRZN 1,878.50
26 |Arbitrum 44TP35HF9 1,594.74
27|Gala XS363HTZB 1,300.00
28 |ApeCoin 7WKVRWPNR 1,271.48
29 |Immutable X 9LJOXLBT 1,138.74
30 [Maker SV17PZF24 1,134.78
31|Graph Token VMQPVH41TW 994.25
32[SAND BVGX9WS2C 854.83
33|Compound KCHF60ONW7 751.24
34 |SushiSwap C1Z2W2TT1 686.21
35|Decentraland 21C6LFASP 628.91
36 |LoopringCoin V2 NZCPF6J82 421.42
37|Synthetix Network RSN26S0SB 325.40
38 |Basic Attention Token [51F8M277P 293.51
39| Optimism ONRMM2RC4 263.51
40 |Enjin MILNQXMNV 251.85
41 |0x Protocol Token HX56HH1ZX 227.40
42 |Wootrade Network G4515)G80 212.80
43 |StorjToken 3W1DVv4LeC 177.88
Sustainability indicators
Bitcoin

Quantitative information

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
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Field Value Unit
S.3 Name of the crypto-asset Bitcoin /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 191640969165.98077| kWh/a
S.10 Renewable energy consumption 241347029759 %
S.11 Energy intensity 12.33560 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 78955324.48602| tCO2e
S.14 GHG intensity 5.08222| kgCO2e

Qualitative information

S.4 Consensus Mechanism
Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain network uses a consensus mechanism called Proof of Work (PoW) to achieve
distributed consensus among its nodes. Here's a detailed breakdown of how it works:

Core Concepts:

1. Nodes and Miners:

- Nodes: Nodes are computers running the Bitcoin software that participate in the network by
validating transactions and blocks.

- Miners: Special nodes, called miners, perform the work of creating new blocks by solving
complex cryptographic puzzles.

2. Blockchain: The blockchain is a public ledger that records all Bitcoin transactions in a series of
blocks. Each block contains a list of transactions, a reference to the previous block (hash), a
timestamp, and a nonce (a random number used once).

3. Hash Functions: Bitcoin uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which
appears random.

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such
as correct signatures and sufficient funds.

2. Mining and Block Creation:

- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's
data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes.

- Proof of Work: The process of finding this nonce is computationally intensive and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network.
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3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the
hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it
to their copy of the blockchain and the process starts again with the next block.

4. Chain Consensus: The longest chain (the chain with the most accumulated proof of work) is
considered the valid chain by the network. Nodes always work to extend the longest valid chain.
In the case of multiple valid chains (forks), the network will eventually resolve the fork by
continuing to mine and extending one chain until it becomes longer.

For the calculation of the corresponding indicators, the additional energy consumption and the
transactions of the Lightning Network have also been taken into account, as this reflects the
categorization of the Digital Token Identifier Foundation for the respective functionally fungible
group (“FFG") relevant for this reporting. If one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher.

S.5 Incentive Mechanisms and Applicable Fees
Bitcoin is present on the following networks: Bitcoin, Lightning Network.

The Bitcoin blockchain relies on a Proof-of-Work (PoW) consensus mechanism to ensure the
security and integrity of transactions. This mechanism involves economic incentives for miners and
a fee structure that supports network sustainability:

Incentive Mechanisms:

1. Block Rewards:

- Newly Minted Bitcoins: Miners are incentivized by block rewards, which consist of newly created
bitcoins awarded to the miner who successfully mines a new block. Initially, the block reward
was 50 BTC, but it halves every 210,000 blocks (approx. every four years) in an event known as
the "halving."

- Halving and Scarcity: The halving mechanism ensures that the total supply of Bitcoin is capped at
21 million, creating scarcity and potentially increasing value over time.

2. Transaction Fees:

- User Fees: Each transaction includes a fee paid by the user to incentivize miners to include their
transaction in a block. These fees are crucial, especially as the block reward diminishes over
time due to halving.

- Fee Market: Transaction fees are determined by the market, where users compete to have their
transactions processed quickly. Higher fees typically result in faster inclusion in a block,
especially during periods of high network congestion.

For the calculation of the corresponding indicators, the additional energy consumption and the
transactions of the Lightning Network have also been taken into account, as this reflects the
categorization of the Digital Token Identifier Foundation for the respective functionally fungible
group (“FFG") relevant for this reporting. If one would exclude these transactions, the respective
estimations regarding the “per transaction” count would be substantially higher

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor for the energy consumption of the network. Hardware is pre-selected based on the
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consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined by taking into account the distribution for the hardware, the efficiency levels for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTl) to determine all implementations of the asset of question in scope and we update the
mappings regulary, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
lightning_network is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
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[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Dogecoin

Quantitative information

D)

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Dogecoin /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 13158311899.91983| kWh/a
S.10 Renewable energy consumption 241347029759 %
S.11 Energy intensity 091217 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 5421172.67653| tCO2e
S.14 GHG intensity 0.37581] kgCO2e

Qualitative information

S.4 Consensus Mechanism

Dogecoin (DOGE) uses a Proof of Work (PoW) consensus mechanism, similar to Bitcoin, but with

some key differences.
Core Concepts :

1. Nodes and Miners:

- Nodes: Nodes in the Dogecoin network are computers running the Dogecoin software. They
validate transactions, maintain the blockchain, and relay information across the network.

- Miners: Miners are specialized nodes that solve cryptographic puzzles to create new blocks and
validate transactions. This process is known as mining.

2. Blockchain: The blockchain is a public ledger that records all Dogecoin transactions in a series of
blocks. Each block contains a list of transactions, a reference to the previous block (hash), a
timestamp, and a nonce (a random number used once).

3. Hash Functions: Dogecoin uses the Scrypt hash function, which is different from Bitcoin's
SHA-256. Scrypt is designed to be more memory-intensive, making it more resistant to ASIC
(Application-Specific Integrated Circuit) mining and encouraging more widespread participation by
regular users with less powerful hardware.

Sustainability indicators according to MiCAR 66 (5)



Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction is validated by nodes to ensure it adheres to the network's rules, such as
correct signatures and sufficient funds.

2. Mining and Block Creation:

- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's
data and passed through the Scrypt hash function, produces a hash below a certain target
value. This target value is adjusted periodically to maintain a consistent block creation time.

- Proof of Work: Finding a valid nonce requires significant computational effort. Once a miner
finds a valid nonce, the new block is broadcast to the network.

3. Block Validation and Addition: Other nodes in the network verify the new block to ensure the
hash is correct and that all transactions within the block are valid. If the block is valid, nodes add it
to their copy of the blockchain, and the process repeats for the next block.

4. Chain Consensus: The longest chain (the chain with the most accumulated proof of work) is
considered the valid chain by the network. Nodes always work to extend the longest valid chain.
In the case of multiple valid chains (forks), the network will eventually resolve the fork by
continuing to mine and extending one chain until it becomes longer.

Security and Economic Incentives:

1. Incentives for Miners:

- Block Rewards: Miners are incentivized to participate in the network by receiving block rewards.
Initially, Dogecoin had a variable block reward, but now it offers a fixed reward of 10,000 DOGE
per block.

- Transaction Fees: Miners also collect transaction fees from the transactions included in the
block. These fees provide an additional incentive for miners.

2. Security:

- Hash Rate and Difficulty: The security of the Dogecoin network is directly proportional to its hash
rate, the total computational power of all miners. A higher hash rate means more difficult and
costly attacks.

- 51% Attack: An attacker would need to control more than 50% of the network's hash rate to
double-spend or rewrite parts of the blockchain. The cost and resource requirement for such
an attack make it impractical for a sufficiently large and decentralized network like Dogecoin.

3. Merged Mining: Dogecoin supports merged mining with Litecoin (LTC). This means miners can
mine both Dogecoin and Litecoin simultaneously without additional computational effort. This
enhances the security of both networks by pooling their hash rates.

S.5 Incentive Mechanisms and Applicable Fees

Dogecoin uses a Proof of Work (PoW) consensus mechanism to ensure network security and
integrity, relying on economic incentives for miners and transaction fees from users.

Incentive Mechanisms

1. Miners:

- Block Rewards: Miners receive block rewards for successfully mining new blocks. Initially,
Dogecoin had a variable block reward, but it now offers a fixed reward of 10,000 DOGE per
block. These rewards are a primary incentive for miners to invest in the computational power
necessary to secure the network.

- Transaction Fees: In addition to block rewards, miners also earn transaction fees from the
transactions they include in the blocks they mine. Although Dogecoin’s transaction fees are
typically low, they still provide an important supplementary income for miners.
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- Merged Mining: Dogecoin supports merged mining with Litecoin, allowing miners to
simultaneously mine both cryptocurrencies without additional computational effort. This
process increases the hash rate and security of both networks by pooling their resources.

2. Security:

- Hash Rate and Difficulty: The security of Dogecoin’'s network is directly related to its hash rate,
the total computational power used by all miners. A higher hash rate makes the network more
resistant to attacks. The mining difficulty adjusts periodically to ensure that blocks are mined
approximately every minute, maintaining network stability. 51% Attack Deterrence: Controlling
more than 50% of the network's hash rate to perform a 51% attack is costly and difficult. The
significant computational power and energy required make such attacks impractical for a large
and decentralized network like Dogecoin.

Fees Applicable on the Dogecoin Blockchain:

1. Transaction Fees:

- Flat Fee Structure: Dogecoin uses a relatively simple fee structure. The typical transaction fee is 1
DOGE per kilobyte of transaction data. This low fee is one of Dogecoin’s appeals, making it
suitable for small and micro-transactions.

- Incentives for Faster Processing: Although transaction fees are generally low, users can choose
to pay higher fees to incentivize miners to include their transactions in the next block, ensuring
faster processing times.

2. Mining Rewards:

- Block Subsidy: The fixed block reward of 10,000 DOGE incentivizes miners to continue securing
the network. This reward will persist as Dogecoin does not have a maximum supply cap,
ensuring continuous incentives for miners.

- Fee Inclusion: Besides the block subsidy, the inclusion of transaction fees provides an additional,
albeit smaller, incentive for miners to process transactions efficiently.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor for the energy consumption of the network. Hardware is pre-selected based on the
consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on
the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined by taking into account the distribution for the hardware, the efficiency levels for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTl) to determine all implementations of the asset of question in scope and we update the
mappings regulary, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.

Sustainability indicators according to MiCAR 66 (5) 11



If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Litecoin

Quantitative information

o

Field Value Unit
S.1T Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Litecoin /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1572647253.70341| kWh/a
S.10 Renewable energy consumption 241347029759 %
S.11 Energy intensity 0.05604 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 647924.47439| tCO2e
S.14 GHG intensity 0.02309] kgCO2e
Sustainability indicators according to MiCAR 66 (5) 12



Qualitative information

S.4 Consensus Mechanism

Litecoin, like Bitcoin, uses Proof of Work (PoW) as its consensus mechanism, but with a few key
differences:

1. Scrypt Hashing Algorithm: Unlike Bitcoin's SHA-256 algorithm, Litecoin uses the Scrypt hashing
algorithm, which is more memory-intensive. This makes mining Litecoin more accessible to
regular users and limits the advantages of specialized hardware (like ASICs) in the early years.

2. Mining and Block Creation: Miners compete to solve cryptographic puzzles and, upon success,
add new blocks to the blockchain. This process involves solving the Scrypt algorithm, which
requires computational work. The first miner to solve the problem earns the block reward and
transaction fees associated with the transactions in the block.

3. Block Time: Litecoin has a block time of 2.5 minutes, much faster than Bitcoin's 10 minutes. This
means transactions confirm more quickly, increasing the overall network speed.

4. Block Reward Halving: Similar to Bitcoin, Litecoin has a block reward halving event approximately
every four years. Initially, miners earned 50 LTC per block, but this reward decreases by half after
each halving event. This process continues until the maximum supply of 84 million LTC is reached.

5. Difficulty Adjustment: Litecoin adjusts the mining difficulty approximately every 2,016 blocks
(about every 3.5 days) to ensure that blocks continue to be mined at a consistent rate of 2.5
minutes per block, regardless of fluctuations in the total network hash rate.

S.5 Incentive Mechanisms and Applicable Fees

Litecoin, like Bitcoin, uses the Proof of Work (PoW) consensus mechanism to secure transactions
and incentivize miners.

Incentive Mechanisms:

1. Mining Rewards:

Block Rewards: Miners are rewarded with Litecoin (LTC) for successfully mining new blocks.
Initially, miners received 50 LTC per block, but this reward halves approximately every four
years. Transaction Fees: Miners also earn transaction fees from the transactions included in the
blocks they mine. Users pay fees to have their transactions processed by miners, especially
when they need faster confirmation times.

2. Halving:

The halving mechanism ensures that over time, fewer Litecoins are introduced into circulation,
creating a deflationary model. This makes mining more valuable as the circulating supply
becomes scarcer, incentivizing miners to continue participating in the network even as block
rewards decrease.

3. Economic Security:

The cost of mining (e.g., hardware and electricity) provides a strong economic incentive for miners
to act honestly. If miners attempt to cheat or attack the network, they risk losing the
computational work they invested, as invalid blocks will be rejected by the network.

Fees on the Litecoin Blockchain:

- Transaction Fees: Litecoin users pay a transaction fee for each transaction, typically calculated in
LTC per byte of transaction data. The fees are dynamic and vary based on network congestion.

- Low Fees: Litecoin is known for its relatively low transaction fees compared to other blockchains
like Bitcoin, which makes it ideal for smaller transactions and micro-payments.

Sustainability indicators according to MiCAR 66 (5) 13



- Fee Redistribution: Collected transaction fees are distributed to miners as part of their rewards for
validating transactions and securing the network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor for the energy consumption of the network. Hardware is pre-selected based on the
consensus mechanism's hash algorithm: Scrypt. A current profitability threshold is determined on
the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined by taking into account the distribution for the hardware, the efficiency levels for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTl) to determine all implementations of the asset of question in scope and we update the
mappings regulary, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
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Bitcoin Cash

Quantitative information

Field Value Unit
S.1T Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Bitcoin Cash /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 834897735.75334| kWh/a
S.10 Renewable energy consumption 24.1347029759 %
S.11 Energy intensity 0.09979 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 34397457874 tCO2e
S.14 GHG intensity 0.04111] kgCO2e

Qualitative information

S.4 Consensus Mechanism

Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain network uses a consensus mechanism called Proof of Work (PoW) to
achieve distributed consensus among its nodes. It originated from the Bitcoin blockchain, hence has
the same consensus mechanisms but with a larger block size, which makes it more centralized.

Core Concepts:

1. Nodes and Miners:

- Nodes: Nodes are computers running the Bitcoin Cash software that participate in the network

by validating transactions and blocks.

- Miners: Special nodes, called miners, perform the work of creating new blocks by solving

complex cryptographic puzzles.

2. Blockchain: The blockchain is a public ledger that records all Bitcoin Cash transactions in a series
of blocks. Each block contains a list of transactions, a reference to the previous block (hash), a

timestamp, and a nonce (a random number used once).

3. Hash Functions: Bitcoin Cash uses the SHA-256 cryptographic hash function to secure the data in
blocks. A hash function takes input data and produces a fixed-size string of characters, which

appears random.

Consensus Process:

1. Transaction Validation: Transactions are broadcast to the network and collected by miners into a
block. Each transaction must be validated by nodes to ensure it follows the network's rules, such

as correct signatures and sufficient funds.
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2. Mining and Block Creation:

- Nonce and Hash Puzzle: Miners compete to find a nonce that, when combined with the block's
data and passed through the SHA-256 hash function, produces a hash that is less than a target
value. This target value is adjusted periodically to ensure that blocks are mined approximately
every 10 minutes.

- Proof of Work: The process of finding this nonce is computationally intensive and requires
significant energy and resources. Once a miner finds a valid nonce, they broadcast the newly
mined block to the network.

3. Block Validation and Addition:

- Other nodes in the network verify the new block to ensure the hash is correct and that all
transactions within the block are valid.

- If the block is valid, nodes add it to their copy of the blockchain and the process starts again with
the next block.

4. Chain Consensus:

- The longest chain (the chain with the most accumulated proof of work) is considered the valid
chain by the network. Nodes always work to extend the longest valid chain.

- In the case of multiple valid chains (forks), the network will eventually resolve the fork by
continuing to mine and extending one chain until it becomes longer.

Smart Bitcoin Cash (SmartBCH) operates as a sidechain to Bitcoin Cash (BCH), leveraging a hybrid
consensus mechanism combining Proof of Work (PoW) compatibility and validator-based validation.

Core Components:

- Proof of Work Compatibility: SmartBCH relies on Bitcoin Cash's PoW for settlement and security,
ensuring robust integration with BCH's main chain. SHA-256 Algorithm: Uses the same SHA-256
hashing algorithm as Bitcoin Cash, allowing compatibility with existing mining hardware and
infrastructure.

- Consensus via Validators: Transactions within SmartBCH are validated by a set of validators
chosen based on staking and operational efficiency. This hybrid approach combines the hash
power of PoW with a validator-based model to enhance scalability and flexibility.

S.5 Incentive Mechanisms and Applicable Fees
Bitcoin Cash is present on the following networks: Bitcoin Cash, Smart Bitcoin Cash.

The Bitcoin Cash blockchain operates on a Proof-of-Work (PoW) consensus mechanism, with
incentives and fee structures designed to support miners and the overall network's sustainability:

Incentive Mechanism:

1. Block Rewards:

- Newly Minted Bitcoins: Miners receive a block reward, which consists of newly created bitcoins
for successfully mining a new block. Initially, the reward was 50 BCH, but it halves approximately
every four years in an event known as the "halving."

- Halving and Scarcity: The halving ensures that the total supply of Bitcoin Cash is capped at 21
million BCH, creating scarcity that could drive up value over time.

2. Transaction Fees:

- User Fees: Each transaction includes a fee, paid by users, that incentivizes miners to include the
transaction in a new block. This fee market becomes increasingly important as block rewards
decrease over time due to the halving events.

- Fee Market: Transaction fees are market-driven, with users competing to get their transactions
included quickly. Higher fees lead to faster transaction processing, especially during periods of
high network congestion.
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Applicable Fees:

1. Transaction Fees:

Bitcoin Cash transactions require a small fee, paid in BCH, which is determined by the
transaction's size and the network demand at the time. These fees are crucial for the continued
operation of the network, particularly as block rewards decrease over time due to halvings.

2. Fee Structure During High Demand:

In times of high congestion, users may choose to increase their transaction fees to prioritize their
transactions for faster processing. The fee structure ensures that miners are incentivized to
prioritize higher-fee transactions.

SmartBCH's incentive model encourages validators and network participants to secure the
sidechain and process transactions efficiently.

Incentive Mechanisms:

- Validator Rewards: Validators are rewarded with a share of transaction fees for their role in
validating transactions and maintaining the network.

- Economic Alignment: The system incentivizes validators to act in the network's best interest,
ensuring stability and fostering adoption through economic alignment.

Applicable Fees:

Transaction Fees: Fees for transactions on SmartBCH are paid in BCH, ensuring seamless
integration with the Bitcoin Cash ecosystem.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'top-down' approach is being used, within
which an economic calculation of the miners is assumed. Miners are persons or devices that actively
participate in the proof-of-work consensus mechanism. The miners are considered to be the central
factor for the energy consumption of the network. Hardware is pre-selected based on the
consensus mechanism's hash algorithm: SHA-256. A current profitability threshold is determined on
the basis of the revenue and cost structure for mining operations. Only Hardware above the
profitability threshold is considered for the network. The energy consumption of the network can be
determined by taking into account the distribution for the hardware, the efficiency levels for
operating the hardware and on-chain information regarding the miners' revenue opportunities. If
significant use of merge mining is known, this is taken into account. When calculating the energy
consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG
DTl) to determine all implementations of the asset of question in scope and we update the
mappings regulary, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
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calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Solana SOL E

Quantitative information

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Solana SOL /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 6345525.00000| kWh/a
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Field Value Unit
S.10 Renewable energy consumption 27.0081797971 %
S.11 Energy intensity 0.00000 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 2150.30229| tCO2e
S.14 GHG intensity 0.00000| kgCO2e

Qualitative information

S.4 Consensus Mechanhism

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.
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Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain
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Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.
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S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Ethereum Eth 4

Quantitative information

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Ethereum Eth /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 2168888.40000| kWh/a
S.10 Renewable energy consumption 26.5386870830 %
S.11 Energy intensity 0.00008 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 721.83441| tCO2e
5.14 GHG intensity 0.00003| kgCO2e

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.
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S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
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information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

NEAR Protocol N

Quantitative information

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset NEAR Protocol /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 920029.47908| kWh/a
S.10 Renewable energy consumption 26.1932222519 %
S.11 Energy intensity 0.00001 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 309.82665| tCO2e
S.14 GHG intensity 0.00000| kgCO2e

Qualitative information

S.4 Consensus Mechanism
NEAR Protocol is present on the following networks: Binance Smart Chain, Ethereum, Near Protocol.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (POA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
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being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:
- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced

with the Doomslug protocol.
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- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

S.5 Incentive Mechanisms and Applicable Fees
NEAR Protocol is present on the following networks: Binance Smart Chain, Ethereum, Near Protocol.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.
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4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.
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2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a
fraction of the energy consumption of the network is attributed to the token, which is determined
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based on the activity of the crypto-asset within the network. When calculating the energy
consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available -
to determine all implementations of the asset in scope. The mappings are updated regularly, based
on data of the Digital Token Identifier Foundation. The information regarding the hardware used
and the number of participants in the network is based on assumptions that are verified with best
effort using empirical data. In general, participants are assumed to be largely economically rational.
As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e.
making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Avalanche AVAX 0

Quantitative information

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Avalanche AVAX /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /

Sustainability indicators according to MiCAR 66 (5) 29



Field Value Unit
S.8 Energy consumption 829651.29389| kWh/a
S.10 Renewable energy consumption 25.4207037379 %
S.11 Energy intensity 0.00008 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 311.50569| tCO2e
5.14 GHG intensity 0.00003| kgCO2e

Qualitative information

S.4 Consensus Mechanism

Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and

Avalanche.
Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other

validators.

- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred

transaction.

- Confidence Counters: Validators maintain confidence counters for each transaction,

incrementing them each time a sampled validator supports their preferred transaction.

- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the

transaction is considered accepted.
2. Snowflake Protocol:

- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.

Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.

- Finality: When a binary decision reaches a certain confidence level, it becomes final.

3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing

for parallel processing and higher throughput.

- Transaction Ordering: Transactions are added to the DAG based on their dependencies,

ensuring a consistent order.

- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

The Avalanche X-Chain uses the Avalanche consensus protocol, which relies on repeated

subsampling of validators to reach agreement on transactions.

S.5 Incentive Mechanisms and Applicable Fees

Avalanche AVAX is present on the following networks: Avalanche, Avalanche X Chain.
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Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Validator incentives on the X-Chain are indirect and come from network-wide AVAX issuance.
Transaction fees are fixed and burned to prevent spam and reduce the total supply of AVAX over
time
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S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, avalanche_x_chain is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.
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Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/

grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Cardano ADA

Quantitative information

......
By 4ot

Field Value Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Cardano ADA /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 785509.20000( kwh/a
S.10 Renewable energy consumption 26.1931305023 %
S.11 Energy intensity 0.00026 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 26452567 tCO2e
S.14 GHG intensity 0.00009] kgCO2e

Qualitative information

S.4 Consensus Mechahism

Core Components: Cardano uses the Ouroboros consensus mechanism, a Proof of Stake (PoS)

protocol designed for scalability, security, and energy efficiency.

Core Concepts:

1. Proof of Stake (PoS): Validators (called slot leaders) are selected based on the amount of ADA

Sustainability indicators according to MiCAR 66 (5)

they have staked, rather than solving complex computational puzzles. Validators propose and
validate blocks, which are added to the blockchain.

. Epochs and Slot Leaders: Cardano divides time into epochs (fixed time periods), each of which is
subdivided into slots. Slot leaders are selected for each slot to validate and propose blocks. Slot
leaders are chosen randomly based on the amount of ADA staked. More stake increases the
probability of being selected. Validators are responsible for confirming transactions during their
slot and passing the block to the next slot leader.

. Delegation and Staking Pools: ADA holders can delegate their tokens to staking pools, which
increases the pool's chances of being selected to validate a block. The pool operator and
delegators share the rewards based on their stakes. This system ensures that participants who do
not want to operate a full validator node can still earn rewards and contribute to network security
by supporting trusted staking pools.

. Security and Adversary Resistance: Ouroboros ensures security even in the presence of potential
attacks. It assumes that adversaries may attempt to propagate alternative chains or send
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arbitrary messages. The protocol is secure as long as more than 51% of the staked ADA is
controlled by honest participants. Settlement Delay: To protect against adversarial attacks, the
new slot leader must consider the last few blocks as transient. Only the blocks preceding these
are treated as finalized, ensuring that chain finality is secure against manipulation attempts. This
mechanism also allows participants to temporarily go offline and resynchronize as long as they
are not disconnected for more than the settlement delay period.

5. Chain Selection: Cardano's nodes adopt the longest valid chain rule: each node stores a local
copy of the blockchain and replaces it with any discovered valid, longer chain. This ensures that all
nodes eventually converge on a single version of the blockchain, maintaining network consistency.

S.5 Incentive Mechanisms and Applicable Fees

Cardano uses incentive mechanisms to ensure network security and decentralization through
staking rewards, slashing mechanisms, and transaction fees.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

- Validators, known as slot leaders, secure the network by validating transactions and creating
new blocks. To participate, validators must stake ADA, and those with larger stakes are more
likely to be selected as slot leaders.

- Validators are rewarded with newly minted ADA and transaction fees for successfully producing
blocks and validating transactions.

- Delegators, who may not wish to run a validator node, can delegate their ADA to staking pools.
By doing so, they contribute to the network's security and earn a share of the rewards earned
by the pool. The rewards are distributed proportionally based on the amount of ADA delegated.

2. Slashing Mechanism:

- To prevent malicious behavior, Cardano employs a slashing mechanism. Validators who act
dishonestly, fail to validate transactions properly, or produce incorrect blocks face penalties
that involve the slashing of a portion of their staked ADA.

- This provides strong economic incentives for validators to act honestly and ensures the
network's integrity and security.

3. Delegation and Pool Operation:

- Staking pools can charge operation fees (a margin on rewards) to maintain their infrastructure.
This includes fixed costs set by pool operators. Delegators earn rewards after pool fees are
deducted, providing a balanced incentive for both operators and delegators to participate
actively.

- Rewards are distributed at the end of each epoch, where staking pool performance and
participation determine the distribution of ADA rewards to all stakeholders.

Applicable Fees:

1. Transaction Fees:

- Transaction fees on Cardano are paid in ADA and are generally low. They are calculated based
on the size of the transaction and the network's current demand. These fees are paid to
validators for including transactions in new blocks.

- The fee formula is: a + b x size, where a is a constant (typically 0.155381 ADA), b is a coefficient
related to the transaction size (0.000043946 ADA/byte), and size refers to the transaction size
in bytes. This ensures that the fee adapts based on network load and the size of each
transaction.
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2. Staking Pool Fees:

- Staking pool operators charge operational costs and a margin fee, which covers the cost of
running and maintaining the staking pool. These fees vary between pools but ensure that
operators can continue to provide their services while offering rewards to delegators.

- After the operator's fee, the remaining rewards are distributed among the delegators based on
the size of their stake.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.

S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
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Polkadot DOT

Quantitative information

Field Value Unit
S.1T Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Polkadot DOT /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 630742.12090| kWh/a
S.10 Renewable energy consumption 27.3187044833 %
S.11 Energy intensity 0.00029 kwh
S.12 Scope 1 DLT GHG emission - Controlled 0.00000| tCO2e
S.13 Scope 2 DLT GHG emission - Purchased 186.15159| tCO2e
S.14 GHG intensity 0.00009| kgCO2e

Qualitative information

S.4 Consensus Mechanism

Polkadot DOT is present on the following networks: Binance Smart Chain, Huobi, Polkadot.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1.

Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens

to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the

pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
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from delegators. The more BNB staked and votes received, the higher the chance of being
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selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Key Features of HECO's Consensus Mechanism:

1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the
network.

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain.

3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid
confirmation of transactions.

4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

Polkadot, a heterogeneous multi-chain framework designed to enable different blockchains to
interoperate, uses a sophisticated consensus mechanism known as Nominated Proof-of-Stake
(NPoS). This mechanism combines elements of Proof-of-Stake (PoS) and a layered consensus model
involving multiple roles and stages.

Core Components:

1. Validators: Validators are responsible for producing new blocks and finalizing the relay chain,
Polkadot's main chain. They stake DOT tokens and validate transactions, ensuring the security and
integrity of the network.

2. Nominators: Nominators delegate their stake to trusted validators, choosing which validators they
believe will act honestly and effectively. They share in the rewards and penalties of the validators
they nominate.

3. Collators: Collators maintain parachains (individual blockchains that connect to the Polkadot relay
chain) by collecting transactions from users and producing state transition proofs for validators.

4. Fishermen: Fishermen monitor the network for malicious activity. They report bad behavior to the
validators to help maintain network security.
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Consensus Process: Polkadot's consensus mechanism operates through a combination of two key
protocols: GRANDPA (GHOST-based Recursive Ancestor Deriving Prefix Agreement) and BABE (Blind
Assignment for Blockchain Extension).

1. BABE (Block Production): BABE is the block production mechanism. It operates similarly to a
lottery, where validators are pseudo-randomly assigned slots to produce blocks based on their
stake. Each validator signs the blocks they produce, which are then propagated through the
network.

2. GRANDPA (Finality): GRANDPA is the finality gadget that provides a higher level of security by
finalizing blocks after they are produced. Unlike traditional blockchains where blocks are
considered final after a number of confirmations, GRANDPA allows for asynchronous finality.
Validators vote on chains, and once a supermajority agrees, the chain is finalized instantly.

Detailed Steps:

1. Block Production (BABE):
- Slot Allocation: Validators are selected to produce blocks in specific time slots.
- Block Proposal: The selected validator for a slot proposes a block, including new transactions
and state changes.
2. Block Propagation and Preliminary Consensus: Proposed blocks are propagated across the
network, where other validators verify the correctness of the transactions and state transitions.
3. Finalization (GRANDPA):
- Voting on Blocks: Validators vote on the chains they believe to be the correct history.
- Supermajority Agreement: Once more than two-thirds of validators agree on a block, it is
finalized.
- Instant Finality: This finality process ensures that once a block is finalized, it is irreversible and
becomes part of the canonical chain.
4. Rewards and Penalties: Validators and nominators earn rewards for participating in the
consensus process and maintaining network security. Misbehavior, such as producing invalid
blocks or being offline, results in penalties, including slashing of staked tokens.

S.5 Incentive Mechanisms and Applicable Fees
Polkadot DOT is present on the following networks: Binance Smart Chain, Huobi, Polkadot.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.
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3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add
blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing
validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the
HECO network. These fees compensate validators for processing and validating transactions.
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2. Smart Contract Execution Fees:
Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

Polkadot uses a consensus mechanism called Nominated Proof-of-Stake (NPoS), which involves a
combination of validators, nominators, and a unique layered consensus process to secure the
network:

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are responsible for producing new blocks and finalizing the relay
chain. They are incentivized with staking rewards, which are distributed in proportion to their
stake and their performance in the consensus process. Validators earn these rewards for
maintaining uptime and correctly validating transactions.

- Commission: Validators can set a commission rate that they charge on the rewards earned by
their nominators. This incentivizes them to perform well to attract more nominators.

2. Nominators:

- Delegation: Nominators stake their tokens by delegating them to trusted validators. They share
in the rewards earned by the validators they support. This mechanism incentivizes nominators
to carefully choose reliable validators.

- Rewards Distribution: The rewards are distributed among validators and their nominators based
on the amount of stake contributed by each party. This ensures that both parties are
incentivized to maintain the network’s security.

3. Collators:

Parachain Maintenance: Collators maintain parachains by collecting transactions and producing
state transition proofs for validators. They are incentivized through rewards for their role in
keeping the parachain operational and secure.

4. Fishermen:

Monitoring: Fishermen are responsible for monitoring the network for malicious activities. They
are rewarded for identifying and reporting malicious behavior, which helps maintain the
network’s security.

5. Economic Penalties:

- Slashing: Validators and nominators face penalties in the form of slashing if they engage in
malicious activities such as double-signing or being offline for extended periods. Slashing
results in the loss of a portion of their staked tokens, which serves as a strong deterrent against
bad behavior.

- Unbonding Period: To withdraw staked tokens, participants must go through an unbonding
period during which their tokens are still at risk of being slashed. This ensures continued
network security even when validators or nominators decide to exit.

Fees on the Polkadot Blockchain:

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Polkadot are dynamic, adjusting based on network demand
and the complexity of the transaction. This model ensures that fees remain fair and
proportional to the network’s usage.

- Fee Burn: A portion of the transaction fees is burned (permanently removed from circulation),
which helps to control inflation and can potentially increase the value of the remaining tokens.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Polkadot are based

on the computational resources required. This encourages efficient use of network resources.
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3. Parachain Slot Auction Fees:

Bidding for Slots: Projects that want to secure a parachain slot must participate in a slot auction.
They bid DOT tokens, and the highest bidders win the right to operate a parachain for a
specified period. This process ensures that only serious projects with significant backing can
secure parachain slots, contributing to the network's overall quality and security.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, huobi is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

S.15 Key energy sources and methodologies

To determine the proportion of renewable energy usage, the locations of the nodes are to be
determined using public information sites, open-source crawlers and crawlers developed in-house.
If no information is available on the geographic distribution of the nodes, reference networks are
used which are comparable in terms of their incentivization structure and consensus mechanism.
This geo-information is merged with public information from Our World in Data, see citation. The
intensity is calculated as the marginal energy cost wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/share-electricity-renewables.
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S.16 Key GHG sources and methodologies

To determine the GHG Emissions, the locations of the nodes are to be determined using public
information sites, open-source crawlers and crawlers developed in-house. If no information is
available on the geographic distribution of the nodes, reference networks are used which are
comparable in terms of their incentivization structure and consensus mechanism. This geo-
information is merged with public information from Our World in Data, see citation. The intensity is
calculated as the marginal emission wrt. one more transaction.

Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by
Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute”
[dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute,
“Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/
grapher/carbon-intensity-electricity Licenced under CC BY 4.0.

Algorand

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Algorand /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 420961.80000| kWh/a

Qualitative information

S.4 Consensus Mechanhism

The Algorand blockchain utilizes a consensus mechanism termed Pure Proof-of-Stake (PPoS).
Consensus, in this context, describes the method by which blocks are selected and appended to the
blockchain. Algorand employs a verifiable random function (VRF) to select leaders who propose
blocks for each round.

Upon block proposal, a pseudorandomly selected committee of voters is chosen to evaluate the
proposal. If a supermajority of these votes are from honest participants, the block is certified. What
makes this algorithm a Pure Proof of Stake is that users are chosen for committees based on the
number of algos in their accounts. This system leverages random committee selection to maintain
high performance and inclusivity within the network.

The consensus process involves three stages:

1. Propose: A leader proposes a new block.
2. Soft Vote: A committee of voters assesses the proposed block.
3. Certify Vote: Another committee certifies the block if it meets the required honesty threshold.
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S.5 Incentive Mechanisms and Applicable Fees

Algorand's consensus mechanism, Pure Proof-of-Stake (PPoS), relies on the participation of token
holders (stakers) to ensure the network's security and integrity:

1. Participation Rewards:

- Staking Rewards: Users who participate in the consensus protocol by staking their ALGO tokens
earn rewards. These rewards are distributed periodically and are proportional to the amount of
ALGO staked. This incentivizes users to hold and stake their tokens, contributing to network
security and stability.

- Node Participation Rewards: Validators, also known as participation nodes, are responsible for
proposing and voting on blocks. These nodes receive additional rewards for their active role in
maintaining the network.

2. Transaction Fees:

- Flat Fee Model: Algorand employs a flat fee model for transactions, which ensures predictability
and simplicity. The standard transaction fee on Algorand is very low (around 0.001 ALGO per
transaction). These fees are paid by users to have their transactions processed and included in
a block.

- Fee Redistribution: Collected transaction fees are redistributed to participants in the network.
This includes stakers and validators, further incentivizing their participation and ensuring
continuous network operation.

3. Economic Security:

Token Locking: To participate in the consensus mechanism, users must lock up their ALGO
tokens. This economic stake acts as a security deposit that can be slashed (forfeited) if the
participant acts maliciously. The potential loss of staked tokens discourages dishonest behavior
and helps maintain network integrity.

Fees on the Algorand Blockchain

1. Transaction Fees:

Algorand uses a flat transaction fee model. The current standard fee is 0.001 ALGO per
transaction. This fee is minimal compared to other blockchain networks, ensuring affordability
and accessibility.

2. Smart Contract Execution Fees:

Fees for executing smart contracts on Algorand are also designed to be low. These fees are based
on the computational resources required to execute the contract, ensuring that users are only
charged for the actual resources they consume.

3. Asset Creation Fees:

Creating new assets (tokens) on the Algorand blockchain involves a small fee. This fee is necessary
to prevent spam and ensure that only genuine assets are created and maintained on the
network.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
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information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Sui

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Sui /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 384739.20000| kWh/a

Qualitative information

S.4 Consensus Mechanism

The Sui blockchain utilizes a Byzantine Fault Tolerant (BFT) consensus mechanism optimized for
high throughput and low latency.

Core Components:

1. Mysten Consensus Protocol:

- The Sui consensus is based on Mysten Labs' Byzantine Fault Tolerance (BFT) protocol, which
builds on principles of Practical Byzantine Fault Tolerance (pBFT) but introduces key
optimizations for performance.

- Leaderless Design: Unlike traditional BFT models, Sui does not rely on a single leader to propose
blocks. Validators can propose blocks simultaneously, increasing efficiency and reducing the
risks associated with leader failure or attacks.

- Parallel Processing: Transactions can be processed in parallel, maximizing network throughput
by utilizing multiple cores and threads. This allows for faster confirmation of transactions and
high scalability.

2. Transaction Validation:

Validators are responsible for receiving transaction requests from clients and processing them.
Each transaction includes digital signatures and must meet the network's rules to be
considered valid. Validators can propose transactions simultaneously, unlike many other
networks that require a sequential, leader-driven process.

3. Optimistic Execution:

Optimistic Consensus: Sui allows validators to process certain non-contentious, independent
transactions without waiting for full consensus. This is known as optimistic execution and helps
reduce transaction latency for many use cases, allowing for fast finality in most cases.

4. Finality and Latency:

The system only requires three rounds of communication between validators to finalize a
transaction. This results in low-latency consensus and rapid transaction confirmation times,
achieving scalability while maintaining security.
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5.Fault Tolerance:
The system can tolerate up to one-third of validators being faulty or malicious without
compromising the integrity of the consensus process.

S.5 Incentive Mechanisms and Applicable Fees
Security and Economic Incentives:

1. Validators:

Validators stake SUI tokens to participate in the consensus process. They earn rewards for

validating transactions and securing the network.
2. Slashing:

Validators can be penalized (slashed) for malicious behavior, such as double-signing or failing to
properly validate transactions. This helps maintain network security and incentivizes honest
behavior.

3. Delegation:

Token holders can delegate their SUI tokens to trusted validators. In return, they share in the
rewards earned by validators. This encourages widespread participation in securing the
network.

Fees on the SUI Blockchain:

1. Transaction Fees:

Users pay transaction fees to validators for processing and confirming transactions. These fees
are calculated based on the computational resources required to process the transaction. Fees
are paid in SUI tokens, which is the native cryptocurrency of the Sui blockchain.

2. Dynamic Fee Model:

The transaction fees on Sui are dynamic, meaning they adjust based on network demand and the

complexity of the transactions being processed.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s) sui is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
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in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

Ripple XRP (X}

Quantitative information

Field Value| Unit
S.1T Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Ripple XRP /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 299664.02239| kWh/a

Qualitative information

S.4 Consensus Mechanism
Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
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selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

Klaytn employs a modified Istanbul Byzantine Fault Tolerance (IBFT) consensus algorithm, a variant
of Proof of Authority (PoA), enabling high performance and immediate transaction finality.

Core Components of Klaytn's Consensus:

1. Modified IBFT Algorithm:

Immediate Transaction Finality: Klaytn's IBFT algorithm ensures that once a block is validated, it is
immediately final and cannot be reversed. This guarantees that transactions are quickly settled,
providing a secure and efficient user experience.

2. Klaytn Governance Council:

- Council-Driven Governance: The Klaytn network is governed by the Klaytn Governance Council, a
consortium of global organizations responsible for selecting and maintaining Consensus Nodes
(CNs). This council-based governance model balances decentralization with performance and
ensures transparency in decision-making.

- Two-Thirds Majority for Finalization: For a block to be finalized, it must receive signatures from
more than two-thirds of the council members, ensuring broad consensus and network security.

3. Three-Tiered Node Architecture:

- Consensus Nodes (CNs): The selected validators responsible for producing and validating blocks.
CNs are at the core of the network’s security and stability.

- Proxy Nodes (PNs): Act as intermediaries, relaying data between CNs and the broader network,
which helps distribute network traffic and improve accessibility.

- Endpoint Nodes (ENs): Interface directly with end-users, facilitating transactions, executing smart
contracts, and serving as user access points to the Klaytn network.

The Ripple blockchain, specifically the XRP Ledger (XRPL), uses a consensus mechanism known as
the Ripple Protocol Consensus Algorithm (RPCA). It differs from Proof of Work (PoW) and Proof of
Stake (PoS) as it doesn't rely on mining or staking but instead leverages trusted validators in a
Federated Byzantine Agreement (FBA) model.

Core Concepts:

1. Validators and Unique Node Lists (UNL): Validators are trusted nodes in the network that validate
transactions and propose new ledger updates. Each node maintains a list of trusted validators
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known as its Unique Node List (UNL). Consensus is achieved when 80% of the validators in a
node's UNL agree on the validity of a transaction or block. This ensures high levels of security and
decentralization.

2. Transaction Ordering and Validation: Transactions are broadcast to validators, and once 80% of
the validators agree, the transaction is considered confirmed. Each ledger in the XRPL contains
transaction data, and validators ensure the validity and proper ordering of these transactions.

Consensus Process:

1. Proposal Phase: Validators propose new transactions to be added to the ledger.

2. Validation Phase: Validators vote on proposed transactions by comparing them to their UNL.
Consensus is achieved when 80% of validators agree.

3. Finalization: Once consensus is reached, the transactions are written into the new ledger, making
them irreversible and final.

S.5 Incentive Mechanisms and Applicable Fees
Ripple XRP is present on the following networks: Binance Smart Chain, Klaytn, Ripple.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.
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- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

Klaytn's incentive structure includes block rewards and transaction fees distributed to Consensus
Nodes (CNs) and various network funds, fostering network security, sustainability, and community
development.

Incentive Mechanisms:

1. Rewards for Consensus Nodes (CNs):

- Fixed Block Rewards: CNs earn fixed rewards in KLAY tokens for validating and producing blocks.
This predictable income incentivizes CNs to maintain active participation and secure the
network.

- Transaction Fees: Users pay transaction fees in KLAY tokens, which are collected by the network
and distributed among the CNs as additional rewards, further supporting network security and
stability.

2. Block Reward Distribution: Governance Council (GC) Reward:

- GC Block Proposer Reward: 10% of the block reward goes to the specific CN that proposed the
block, incentivizing continuous active participation.

- GC Staking Award: 40% of the block reward is distributed among all Governance Council
members who stake KLAY, promoting network security by rewarding staked tokens.

- Klaytn Community Fund (KCF): 30% of each block reward is allocated to the KCF to support
community development, dApp creation, and overall ecosystem growth.

- Klaytn Foundation Fund (KFF): 20% of the block reward goes to the KFF, providing resources for
long-term network sustainability and future development initiatives.

3. Transaction Fees:

- User Fees for Network Interaction: Users pay fees in KLAY based on gas usage and gas price for
transactions. These fees are then distributed to CNs, incentivizing efficient transaction
processing and active participation.

Applicable Fees:

Transaction Fees: Transaction fees on Klaytn are paid in KLAY and calculated based on gas
consumption. These fees support network maintenance by compensating validators and fostering
economic sustainability.

The Ripple XRP blockchain uses a unique incentive structure that differs from traditional Proof of
Work (PoW) or Proof of Stake (PoS) systems, focusing on its Ripple Protocol Consensus Algorithm
(RPCA).
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Incentive Mechanisms to Secure Transactions:

1. Validators: Validators on the Ripple network are not directly compensated with rewards like in
PoW/PoS models. Instead, they are incentivized by the utility and stability of the network,
particularly financial institutions that benefit from Ripple's efficiency in cross-border payments.

2. No Mining: Since Ripple does not use mining, it eliminates the need for energy-intensive
computations, contributing to fast transaction speeds and scalability.

Fees on the Ripple XRP Blockchain:

1. Transaction Fees: Ripple charges minimal transaction fees (typically fractions of an XRP, known as
\drops") for each transaction. The purpose of these fees is to prevent network spam and
overload.

2. Burn Mechanism: A portion of each transaction fee is burned, meaning it's permanently removed
from circulation. This reduces the overall supply of XRP over time, contributing to potential long-
term value stability.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, klaytn is calculated first. For the energy consumption of the token, a fraction
of the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Injective Token
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Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Injective Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 237281.39681| kWh/a

Qualitative information

S.4 Consensus Mechanhism

Injective Token is present on the following networks: Binance Smart Chain, Cosmos, Ethereum,
Injective, Osmosis.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
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Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The Cosmos network uses the Cosmos SDK, a modular framework that enables developers to build
custom, application-specific blockchains. Cosmos SDK chains rely on Tendermint Core, a Byzantine
Fault Tolerant (BFT) Proof of Stake (PoS) consensus engine that supports interoperability and fast
transaction finality.

Core Components:

1. Tendermint BFT Consensus with Proof of Stake:

- Validator Selection: Cosmos validators are selected based on the amount of ATOM they stake or
receive from delegators. These validators participate in block proposal and validation through a
two-thirds majority voting system.

- Security Threshold: Tendermint BFT ensures network security as long as fewer than one-third of
validators act maliciously.

2. Modular Cosmos SDK Framework:

- Inter-Blockchain  Communication (IBC): The Cosmos SDK supports IBC, allowing seamless
interoperability between Cosmos-based blockchains.

- Application Blockchain Interface (ABCI): This interface separates the consensus layer from the
application layer, enabling developers to implement custom logic without modifying the
consensus engine.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Injective operates on a Tendermint-based Proof of Stake (PoS) consensus model, ensuring high
throughput and immediate transaction finality.

Core Components:

- Tendermint-based Proof of Stake (PoS):
Ensures instant transaction finality and supports efficient block production for high-speed
transactions.
- Validator Selection:
Validators are chosen based on the amount of INJ tokens staked, considering both self-staked
and delegated tokens, to maintain a decentralized network.
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- Delegation:
INJ holders can delegate their tokens to validators, earning a share of staking rewards while
participating in network governance.
- Instant Finality:
The Tendermint consensus mechanism provides immediate finality, ensuring transactions cannot
be reversed once validated.

Osmosis operates on a Proof of Stake (PoS) consensus mechanism, leveraging the Cosmos SDK and
Tendermint Core to provide secure, decentralized, and scalable transaction processing.

Core Components:

- Proof of Stake (PoS): Validators are chosen based on the amount of OSMO tokens they stake or
are delegated by other token holders. Validators are responsible for validating transactions,
producing blocks, and maintaining network security.

- Cosmos SDK and Tendermint Core: Osmosis uses Tendermint Core for Byzantine Fault Tolerant
(BFT) consensus, ensuring fast finality and resistance to attacks as long as less than one-third of
validators are malicious.

- Decentralized Governance: OSMO token holders can participate in governance by voting on
protocol upgrades and network parameters, fostering a community-driven approach to network
development.

S.5 Incentive Mechanisms and Applicable Fees

Injective Token is present on the following networks: Binance Smart Chain, Cosmos, Ethereum,
Injective, Osmosis.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.
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- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The Cosmos network incentivizes both validators and delegators to secure the network through
staking rewards, funded by transaction fees and newly minted ATOM.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:

ATOM Rewards: Validators earn staking rewards in ATOM tokens for participating in consensus,

with rewards shared with delegators who stake ATOM through delegation.
2. Slashing for Accountability:

Penalties for Misconduct: Validators who act maliciously, such as double-signing or staying offline,
face slashing penalties, which remove a portion of their staked ATOM. Delegators may also
experience slashing if their chosen validator is penalized, encouraging careful selection of
trustworthy validators.

Applicable Fees:

1. Transaction Fees:
User-Paid Fees in ATOM: All transactions on the Cosmos Hub incur fees paid in ATOM,
compensating validators for transaction processing and helping to prevent network spam.
2. Customizable Fee Model:
Custom Token Fees: Cosmos SDK allows individual chains to define their own transaction fees in
tokens other than ATOM, supporting varied application requirements within the ecosystem.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Injective incentivizes network participation through staking rewards and a unique transaction fee
model that supports long-term value for INJ tokens.

Incentive Mechanisms:

Staking Rewards:
INJ holders earn rewards for staking their tokens, encouraging active participation in securing the
network.
Validator Rewards:
Validators receive staking rewards and transaction fees for processing transactions and
maintaining network security.

Applicable Fees:

Transaction Fees:
Users pay fees in INJ tokens for network transactions, including smart contract execution and
trading.
Fee Structure:
A portion of transaction fees is burned via a weekly on-chain auction, reducing the overall supply
of INJ tokens and supporting a deflationary tokenomics model.

Osmosis incentivizes validators, delegators, and liquidity providers through a combination of staking
rewards, transaction fees, and liquidity incentives.

Incentive Mechanisms:

- Validator Rewards: Validators earn rewards from transaction fees and block rewards, distributed in
OSMO tokens, for their role in securing the network and processing transactions. Delegators who
stake their OSMO tokens with validators receive a share of these rewards.

- Liquidity Provider Rewards: Users providing liquidity to Osmosis pools earn swap fees and may
receive additional incentives in the form of OSMO tokens to encourage liquidity provision.

- Superfluid Staking: Liquidity providers can participate in superfluid staking, staking a portion of
their OSMO tokens within liquidity pools. This mechanism allows users to earn staking rewards
while maintaining liquidity in the pools

Applicable Fees:

Transaction Fees: Users pay transaction fees in OSMO tokens for network activities, including swaps,
staking, and governance participation. These fees are distributed to validators and delegators,
incentivizing their continued participation and support for network security.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These

Sustainability indicators according to MiCAR 66 (5) 55



assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. Due to
the structure of this network, it is not only the mainnet that is responsible for energy consumption.
In order to calculate the structure adequately, a proportion of the energy consumption of the
connected network, cosmos, must also be taken into account, because the connected network is
also responsible for security. This proportion is determined on the basis of gas consumption. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, cosmos, ethereum, osmosis is calculated first. For the energy consumption of
the token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

Polygon POL @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Polygon POL /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 92401.97950| kWh/a

Qualitative information

S.4 Consensus Mechanism
Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
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is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:
- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.
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- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This

provides an additional financial incentive to maintain the network’s integrity and efficiency.
2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees
Polygon POL is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in

malicious behavior or fail to perform their duties correctly. This includes double-signing or
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going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. Due to
the structure of this network, it is not only the mainnet that is responsible for energy consumption.
In order to calculate the structure adequately, a proportion of the energy consumption of the
connected network, ethereum, must also be taken into account, because the connected network is
also responsible for security. This proportion is determined on the basis of gas consumption. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
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of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Fantom

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Fantom /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 78840.00000| kwWh/a

Qualitative information

S.4 Consensus Mechanism

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network's history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

S.5 Incentive Mechanisms and Applicable Fees

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.
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Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Stellar Lumen @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Stellar Lumen /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 52560.00000| kWh/a
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Qualitative information

S.4 Consensus Mechanism
Stellar uses a unique consensus mechanism known as the Stellar Consensus Protocol (SCP).
Core Concepts:

1. Federated Byzantine Agreement (FBA):

- SCP is built on the principles of Federated Byzantine Agreement (FBA), which allows
decentralized, leaderless consensus without the need for a closed system of trusted
participants.

- Quorum Slices: Each node in the network selects a set of other nodes (quorum slice) that it
trusts. Consensus is achieved when these slices overlap and collectively agree on the
transaction state.

2. Nodes and Validators:

- Nodes: Nodes running the Stellar software participate in the network by validating transactions
and maintaining the ledger.

- Validators: Nodes that are responsible for validating transactions and reaching consensus on
the state of the ledger. Consensus Process

3. Transaction Validation:

Transactions are submitted to the network and nodes validate them based on predetermined

rules, such as sufficient balances and valid signatures.
4. Nomination Phase:

- Nomination: Nodes nominate values (proposed transactions) that they believe should be
included in the next ledger. Nodes communicate their nominations to their quorum slices.

- Agreement on Nominations: Nodes vote on the nominated values, and through a process of
voting and federated agreement, a set of candidate values emerges. This phase continues until
nodes agree on a single value or a set of values.

5. Ballot Protocol (Voting and Acceptance): Balloting:

- The agreed-upon values from the nomination phase are then put into ballots. Each ballot goes
through multiple rounds of voting, where nodes vote to either accept or reject the proposed
values.

- Federated Voting: Nodes exchange votes within their quorum slices, and if a value receives
sufficient votes across overlapping slices, it moves to the next stage.

- Acceptance and Confirmation: If a value gathers enough votes through multiple stages (prepare,
confirm, externalize), it is accepted and externalized as the next state of the ledger.

6. Ledger Update:

Once consensus is reached, the new transactions are recorded in the ledger. Nodes update their

copies of the ledger to reflect the new state. Security and Economic Incentives
7. Trust and Quorum Slices:

Nodes are free to choose their own quorum slices, which provides flexibility and decentralization.
The overlapping nature of quorum slices ensures that the network can reach consensus even if
some nodes are faulty or malicious.

8. Stability and Security:

SCP ensures that the network can achieve consensus efficiently without relying on energy-
intensive mining processes. This makes it environmentally friendly and suitable for high-
throughput applications.

9. Incentive Mechanisms:

Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct
economic incentives like mining rewards. Instead, the network incentivizes participation
through the intrinsic value of maintaining a secure, efficient, and reliable payment network.
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S.5 Incentive Mechanisms and Applicable Fees

Stellar's consensus mechanism, the Stellar Consensus Protocol (SCP), is designed to achieve
decentralized and secure transaction validation through a federated Byzantine agreement (FBA)
model. Unlike Proof of Work (PoW) or Proof of Stake (PoS) systems, Stellar does not rely on direct
economic incentives like mining rewards. Instead, it ensures network security and transaction
validation through intrinsic network mechanisms and transaction fees.

Incentive Mechanisms:

1. Quorum Slices and Trust:

- Quorum Slices: Each node in the Stellar network selects other nodes it trusts to form a quorum
slice. Consensus is achieved through the intersection of these slices, creating a robust and
decentralized trust network.

- Federated Voting: Nodes communicate their votes within their quorum slices, and through
multiple rounds of federated voting, they agree on the transaction state. This process ensures
that even if some nodes are compromised, the network can still achieve consensus securely.

2. Intrinsic Value and Participation:

- Network Value: The intrinsic value of participating in a secure, efficient, and reliable payment
network incentivizes nodes to act honestly and maintain network security. Organizations and
individuals running nodes benefit from the network's functionality and the ability to facilitate
transactions.

- Decentralization: By allowing nodes to choose their own quorum slices, Stellar promotes
decentralization, reducing the risk of central points of failure and making the network more
resilient to attacks. Fees on the Stellar Blockchain

3. Transaction Fees:

- Flat Fee Structure: Each transaction on the Stellar network incurs a flat fee of 0.00001 XLM
(known as a base fee). This low and predictable fee structure makes Stellar suitable for
micropayments and high-volume transactions.

- Spam Prevention: The transaction fee serves as a deterrent against spam attacks. By requiring a
small fee for each transaction, Stellar ensures that the network remains efficient and that
resources are not wasted on processing malicious or frivolous transactions.

4. Operational Costs:

Minimal Fees: The minimal transaction fees on Stellar not only prevent spam but also cover the
operational costs of running the network. This ensures that the network can sustain itself
without placing a significant financial burden on users.

5. Reserve Requirements:

- Account Reserves: To create a new account on the Stellar network, a minimum balance of 1 XLM
is required. This reserve requirement prevents the creation of an excessive number of
accounts, further protecting the network from spam and ensuring efficient resource usage.

- Trustline and Offer Reserves: Additional reserve requirements exist for creating trustlines and
offers on the Stellar decentralized exchange (DEX). These reserves help maintain network
integrity and prevent abuse.

S.9 Energy consumption sources and methodologies

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
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calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Chiliz ©

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Chiliz /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 23276.77644| kWh/a

Qualitative information

S.4 Consensus Mechahism

Chiliz is present on the following networks: Binance Beacon Chain, Chiliz, Chiliz Legacy, Ethereum,
Solana.

Binance Beacon Chain operated on a Delegated Proof of Stake (DPoS) consensus mechanism
before its operations were discontinued in fall 2024 and its migration to Binance Smart Chain;
validators were elected by token holders through staking and voting, limiting active participation to a
manageable number of nodes while maintaining decentralization; validators were selected based on
the staking weight of their delegators, ensuring stakeholder interests were proportionally
represented in the validation process; regular validator rotation was implemented to promote
fairness and decentralization by allowing multiple participants to contribute to the network; the
system was designed to tolerate some degree of validator failures while maintaining the network’s
operational integrity, ensuring resilience.

The Chiliz Chain operates on a Proof of Staked Authority (POSA) consensus model, a hybrid that
combines Proof of Stake (PoS) and Proof of Authority (POA) to secure the network through both
economic and reputational incentives.

Core Components:

- Proof of Staked Authority (PoSA) Validator Selection: Validators are selected based on their stake of
CHZ tokens and their reputation within the network, enhancing security and trustworthiness.

- Collateral Requirement: Validators must lock a portion of CHZ as collateral, which can be slashed if
they act maliciously or fail to meet network standards, ensuring alignment with network security.
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The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.
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Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Chiliz is present on the following networks: Binance Beacon Chain, Chiliz, Chiliz Legacy, Ethereum,
Solana.

The Binance Beacon Chain incentivized validators and ensured fee transparency before its
migration to Binance Smart Chain; validators were rewarded solely through transaction fees, with no
block rewards provided, aligning incentives with network usage and transaction volume; transaction
fees were calculated and displayed upfront, ensuring clarity for users and promoting trust in the fee
structure; a portion of transaction fees collected in BNB was burned, reducing the overall token
supply and contributing to a deflationary economic model.

Chiliz incentivizes validators and delegators to contribute to network security through rewards and
transaction fees in CHZ.

Incentive Mechanisms:

- Staking Rewards Validator Rewards: Validators earn CHZ tokens for validating transactions and
maintaining network integrity.

- Delegator Rewards: CHZ holders who delegate their tokens to validators share in staking rewards,
allowing passive participation in network security.

Applicable Fees:

Transaction Fees CHZ-Based Fees: Transaction fees are paid in CHZ and are distributed to
validators as additional compensation, supporting validator incentives and covering network
operational costs.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.
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S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The
nodes are considered to be the central factor for the energy consumption of the network. These
assumptions are made on the basis of empirical findings through the use of public information
sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating
the hardware used within the network are the requirements for operating the client software. The
energy consumption of the hardware devices was measured in certified test laboratories. When
calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital
Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we
update the mappings regulary, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_beacon_chain, ethereum, solana is calculated first. For the energy consumption of the
token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

ChainLink Token @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /

Sustainability indicators according to MiCAR 66 (5) 68



Field Value| Unit
S.3 Name of the crypto-asset ChainLink Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 11201.15790| kWh/a

Qualitative information

S.4 Consensus Mechahism

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
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- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (POA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.
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8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom’s Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network’s history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
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the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
- State Commitments: The state of these transactions is periodically committed to the Ethereum
main chain.
2. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering transactions and creating
batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to
Ethereum.
3. Fraud Proofs:
- Assumption of Validity: Transactions are assumed to be valid by default.
- Challenge Period: A specific time window during which anyone can challenge a transaction by
submitting a fraud proof.
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to
determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized.

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches.

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state.

3. State Commitment: The updated state and the batch of transactions are periodically committed
to the Ethereum main chain. This is done by posting the state root (a cryptographic hash
representing the state) and transaction data as calldata on Ethereum.

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid.

- Interactive Verification: The dispute is resolved through an interactive verification game, which
involves breaking down the transaction into smaller steps to identify the exact point of fraud.

- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses
their staked collateral as a penalty.

5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.
This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:
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Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.
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Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator’s stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.
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- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

ChainLink Token is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Fantom, Gnosis Chain, Optimism, Polygon, Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.
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Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.
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Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.

Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
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validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

1. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-
chain. They play a critical role in maintaining the efficiency and speed of the network.

- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize
sequencers to process transactions quickly and accurately.

2. Validators and Fraud Proofs:

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by
submitting a fraud proof during a specified challenge period. This mechanism ensures that
invalid transactions are detected and reverted.

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions. This incentivizes participants to actively monitor the network for invalid
transactions, thereby enhancing security.

3. Economic Penalties:

- Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully
challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior.

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees:

- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.
These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the
overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum.

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions.

3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based
on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, avalanche, binance_smart_chain, ethereum, fantom, gnosis_chain, optimism, polygon,
solana is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
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Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Curve DAO Token =

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Curve DAO Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 8129.21359| kwWh/a

Qualitative information

S.4 Consensus Mechanism

Curve DAO Token is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain,
Solana.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.
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Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network’s history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
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a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.
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2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Curve DAO Token is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain,
Solana.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.
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2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.

Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.
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- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:
Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.
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2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, ethereum, fantom, gnosis_chain, solana is calculated first. For the energy consumption of
the token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

a4
2

Uniswap

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Uniswap /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 6837.83049| kWh/a

Qualitative information

S.4 Consensus Mechanhism

Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Sustainability indicators according to MiCAR 66 (5) 88



Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.
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6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:
Transactions are first validated by validators who have staked MATIC tokens. These validators
confirm the validity of transactions and include them in blocks.
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2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees
Uniswap is present on the following networks: Arbitrum, Binance Smart Chain, Ethereum, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.
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3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.
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Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

Sustainability indicators according to MiCAR 66 (5) 93



2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, binance_smart_chain, ethereum, polygon is calculated first. For the energy consumption of
the token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

SHIBA INU ()
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Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset SHIBA INU /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 5674.59511| kWh/a

Qualitative information

S.4 Consensus Mechanhism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
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Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Aave Token

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Aave Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 5203.42369| kWh/a

Qualitative information

S.4 Consensus Mechanism

Aave Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
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- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.

- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.
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The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Key Features of HECO's Consensus Mechanism:

1. Validator Selection: HECO supports up to 21 validators, selected based on their stake in the
network.

2. Transaction Processing: Validators are responsible for processing transactions and adding blocks
to the blockchain.

3. Transaction Finality: The consensus mechanism ensures quick finality, allowing for rapid
confirmation of transactions.

4. Energy Efficiency: By utilizing PoS elements, HECO reduces energy consumption compared to
traditional Proof-of-Work systems.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:
- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced

with the Doomslug protocol.
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- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:
Transactions are first validated by validators who have staked MATIC tokens. These validators
confirm the validity of transactions and include them in blocks.
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2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.
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Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Aave Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Huobi, Near Protocol, Polygon, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.
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Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:
- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.
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2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.
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The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

The Huobi Eco Chain (HECO) blockchain employs a Hybrid-Proof-of-Stake (HPoS) consensus
mechanism, combining elements of Proof-of-Stake (PoS) to enhance transaction efficiency and
scalability.

Incentive Mechanism:

1. Validator Rewards:

Validators are selected based on their stake in the network. They process transactions and add
blocks to the blockchain. Validators receive rewards in the form of transaction fees for their role
in maintaining the blockchain's integrity.

2. Staking Participation:

Users can stake Huobi Token (HT) to become validators or delegate their tokens to existing
validators. Staking helps secure the network and, in return, participants receive a portion of the
transaction fees as rewards.

Applicable Fees:

1. Transaction Fees (Gas Fees):
Users pay gas fees in HT tokens to execute transactions and interact with smart contracts on the
HECO network. These fees compensate validators for processing and validating transactions.
2. Smart Contract Execution Fees:
Deploying and interacting with smart contracts incur additional fees, which are also paid in HT
tokens. These fees cover the computational resources required to execute contract code.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.
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Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.
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- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their

SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
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This encourages widespread participation in securing the network and ensures
decentralization.
3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, huobi, near_protocol, polygon, solana is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

Axie Infinity Shard @
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Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Axie Infinity Shard /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 3077.55553| kWh/a

Qualitative information

S.4 Consensus Mechanhism

Axie Infinity Shard is present on the following networks: Binance Smart Chain, Ethereum, Harmony
One, Ronin, Solana.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
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Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EPoS), designed to
balance validator influence and enhance network security while improving transaction scalability.

Core Components:

1. Effective Proof of Stake (EPoS):

- Validator Diversity: EPoS allows a large number of validators to participate and limits the
influence of high-stake validators, promoting decentralization and preventing stake
centralization.

- Staking Across Shards: Multiple validators compete within each shard, distributing staking power
more broadly and enhancing network security.

2. Sharding with PBFT Finality:

- Parallel Transaction Processing: Harmony's four shards enable independent processing of
transactions and smart contracts, enhancing scalability and throughput.

- Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT)
model, ensuring immediate finality once blocks are validated and achieving high transaction
speeds.

Ronin utilizes a Delegated Proof of Stake (DPoS) consensus mechanism, where community-elected
validators are responsible for securing the network and validating transactions.

Core Components of Ronin's Consensus:

1. Delegated Proof of Stake (DPoS):

- Community Voting for Validator Selection: RON token holders delegate their tokens to vote for
validators, who are then selected to produce blocks, validate transactions, and maintain
network security. Validators with the most votes are chosen to participate in consensus.

- Periodic Validator Rotation: Validators are regularly rotated based on community votes,
enhancing decentralization and preventing long-term control by any single validator group. This
rotation supports both security and fairness.
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2. Incentive-Driven Voting System:
Alignment with Community Interests: The voting system ensures that validators remain aligned
with community goals. Validators that fail to perform adequately or act against network
interests may lose votes and be replaced by more trusted participants.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:
- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.
- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.
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2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Axie Infinity Shard is present on the following networks: Binance Smart Chain, Ethereum, Harmony
One, Ronin, Solana.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:
- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.
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- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Harmony incentivizes validators and delegators to participate in network security and performance
through staking rewards, transaction fees, and a unique reward structure promoting
decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:
ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the
network, with a share of these rewards distributed to delegators based on the amount staked.
2. Decentralization Penalty for High Stake:
Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake
experience reduced rewards, preventing centralization and encouraging a fair distribution of
staking power.

Applicable Fees:

1. Transaction Fees:
Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications
and providing validators with additional rewards.

Ronin's incentive model combines rewards, slashing mechanisms, and governance features to
support network security and encourage active community participation.
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Incentive Mechanisms:

1. Rewards for Validators and Delegators:

- Staking Rewards for Validators: Validators earn RON tokens as rewards for successfully
producing blocks and validating transactions. These rewards incentivize validators to fulfill their
duties diligently, maintaining network stability.

- Delegator Rewards: Delegators who stake their tokens with selected validators also earn a
portion of the staking rewards. This sharing of rewards promotes broad participation from
token holders in network security and governance.

2. Slashing Mechanism for Accountability:

- Penalty for Malicious Behavior: A slashing mechanism penalizes validators who act dishonestly
or fail to meet performance standards by cutting a portion of their staked RON tokens. This
deters misbehavior and encourages responsible participation.

- Delegator Risk: Delegators who stake with misbehaving validators are also subject to slashing,
which encourages them to choose trustworthy validators and monitor performance carefully.

3. Governance Participation:

RON Token for Governance: Beyond staking and transaction fees, the RON token enables token
holders to participate in governance. This includes voting on network upgrades, validator
selection, and other protocol decisions, giving token holders a voice in network direction and

policy.
Applicable Fees:

Transaction Fees: Fees are paid in RON tokens, contributing to validator rewards and helping to
maintain network operations. These fees are designed to be affordable, ensuring accessibility for
users while supporting validators' roles.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain
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Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, ethereum, harmony_one, ronin, solana is calculated first. For the energy
consumption of the token, a fraction of the energy consumption of the network is attributed to the
token, which is determined based on the activity of the crypto-asset within the network. When
calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG
DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are
updated regularly, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

1INCH Token 42)

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset TINCH Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1878.50472| kWh/a

Sustainability indicators according to MiCAR 66 (5) 114



Qualitative information

S.4 Consensus Mechanism

1INCH Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Near Protocol, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.
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3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
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the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):
- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.
- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.
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2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

1INCH Token is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Near Protocol, Solana.
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Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.
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Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.
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Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.
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4. Epoch Rotation and Validator Selection:
Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each
epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain
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Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, near_protocol, solana is calculated first.
For the energy consumption of the token, a fraction of the energy consumption of the network is
attributed to the token, which is determined based on the activity of the crypto-asset within the
network. When calculating the energy consumption, the Functionally Fungible Group Digital Token
Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The
mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Arbitrum

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Arbitrum /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1594.74299| kWh/a
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Qualitative information

S.4 Consensus Mechanism
Arbitrum is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees
Arbitrum is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:
- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.
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- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the

Sustainability indicators according to MiCAR 66 (5) 125



energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Gala @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Gala /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1299.99513| kWh/a

Qualitative information

S.4 Consensus Mechanhism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.
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This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

ApeCoin

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset ApeCoin /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1271.48012| kWh/a

Qualitative information

S.4 Consensus Mechanism
ApeCoin is present on the following networks: Ethereum, Polygon.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.
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Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.
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3. Economic Security:
Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees
ApeCoin is present on the following networks: Ethereum, Polygon.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain
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4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum, polygon is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Immutable X @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Immutable X /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1138.74254| kWh/a
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Qualitative information

S.4 Consensus Mechanism
Immutable X is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.
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The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees
Immutable X is present on the following networks: Binance Smart Chain, Ethereum.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.
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3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
binance_smart_chain, ethereum is calculated first. For the energy consumption of the token, a
fraction of the energy consumption of the network is attributed to the token, which is determined
based on the activity of the crypto-asset within the network. When calculating the energy
consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available -
to determine all implementations of the asset in scope. The mappings are updated regularly, based
on data of the Digital Token Identifier Foundation. The information regarding the hardware used
and the number of participants in the network is based on assumptions that are verified with best
effort using empirical data. In general, participants are assumed to be largely economically rational.
As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e.
making higher estimates for the adverse impacts.

Maker

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Maker /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 1134.78298| kWh/a
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Qualitative information

S.4 Consensus Mechanism
Maker is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
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active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees
Maker is present on the following networks: Avalanche, Binance Smart Chain, Ethereum.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.
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Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases

the validator's total stake and improves their chances of being selected to produce blocks.
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- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:
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To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum is calculated first. For the energy consumption of the
token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

Graph Token @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Graph Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 994.25098| kWh/a

Qualitative information

S.4 Consensus Mechanism
Graph Token is present on the following networks: Arbitrum, Ethereum.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

Sustainability indicators according to MiCAR 66 (5) 138



5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees
Graph Token is present on the following networks: Arbitrum, Ethereum.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Sustainability indicators according to MiCAR 66 (5) 139



Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, ethereum is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

SAND E

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
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Field Value| Unit
S.3 Name of the crypto-asset SAND /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 854.83281| kWh/a

Qualitative information

S.4 Consensus Mechanism
SAND is present on the following networks: Ethereum, Polygon, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:
Transactions are first validated by validators who have staked MATIC tokens. These validators
confirm the validity of transactions and include them in blocks.
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2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.
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Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees
SAND is present on the following networks: Ethereum, Polygon, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.
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This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.
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Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum, polygon, solana is calculated first. For the energy consumption of the token, a fraction of
the energy consumption of the network is attributed to the token, which is determined based on
the activity of the crypto-asset within the network. When calculating the energy consumption, the
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Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Compound @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Compound /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 751.23654| kWh/a

Qualitative information

S.4 Consensus Mechahism

Compound is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Near Protocol, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
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3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.

- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.

- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.
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The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.
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Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.
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Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Compound is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Gnosis Chain, Near Protocol, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.
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- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.
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Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.
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Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.
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Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, near_protocol, solana is calculated first.
For the energy consumption of the token, a fraction of the energy consumption of the network is
attributed to the token, which is determined based on the activity of the crypto-asset within the
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network. When calculating the energy consumption, the Functionally Fungible Group Digital Token
Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The
mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

SushiSwap %%

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset SushiSwap /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 686.21041| kWh/a

Qualitative information

S.4 Consensus Mechahism

SushiSwap is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain,
Harmony One, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.
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Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network’s history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
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a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Harmony operates on a consensus mechanism called Effective Proof of Stake (EP0S), designed to
balance validator influence and enhance network security while improving transaction scalability.

Core Components:

1. Effective Proof of Stake (EPoS):

- Validator Diversity: EPoS allows a large number of validators to participate and limits the
influence of high-stake validators, promoting decentralization and preventing stake
centralization.

- Staking Across Shards: Multiple validators compete within each shard, distributing staking power
more broadly and enhancing network security.

2. Sharding with PBFT Finality:

- Parallel Transaction Processing: Harmony's four shards enable independent processing of
transactions and smart contracts, enhancing scalability and throughput.

- Fast Finality with PBFT: Each shard uses a modified Practical Byzantine Fault Tolerance (PBFT)
model, ensuring immediate finality once blocks are validated and achieving high transaction
speeds.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.
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3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

S.5 Incentive Mechanisms and Applicable Fees

SushiSwap is present on the following networks: Arbitrum, Ethereum, Fantom, Gnosis Chain,
Harmony One, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.
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- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.

Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.
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- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

Harmony incentivizes validators and delegators to participate in network security and performance
through staking rewards, transaction fees, and a unique reward structure promoting
decentralization.

Incentive Mechanisms:

1. Staking Rewards for Validators and Delegators:
ONE Token Rewards: Validators earn ONE tokens for validating transactions and securing the
network, with a share of these rewards distributed to delegators based on the amount staked.
2. Decentralization Penalty for High Stake:
Reward Adjustment for Large Stakeholders: Validators with an excessive delegated stake
experience reduced rewards, preventing centralization and encouraging a fair distribution of
staking power.

Applicable Fees:

1. Transaction Fees:
Harmony charges minimal transaction fees in ONE tokens, benefiting high-frequency applications
and providing validators with additional rewards.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.
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Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, ethereum, fantom, gnosis_chain, harmony_one, polygon is calculated first. For the energy
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consumption of the token, a fraction of the energy consumption of the network is attributed to the
token, which is determined based on the activity of the crypto-asset within the network. When
calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG
DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are
updated regularly, based on data of the Digital Token Identifier Foundation. The information
regarding the hardware used and the number of participants in the network is based on
assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Decentraland (s

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Decentraland /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 628.90810| kWh/a

Qualitative information

S.4 Consensus Mechanism
Decentraland is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.
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- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.
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Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees
Decentraland is present on the following networks: Ethereum, Gnosis Chain, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain's incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.
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Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.
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4. Smart Contract Fees:
Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum, gnosis_chain, solana is calculated first. For the energy consumption of the token, a
fraction of the energy consumption of the network is attributed to the token, which is determined
based on the activity of the crypto-asset within the network. When calculating the energy
consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available -
to determine all implementations of the asset in scope. The mappings are updated regularly, based
on data of the Digital Token Identifier Foundation. The information regarding the hardware used
and the number of participants in the network is based on assumptions that are verified with best
effort using empirical data. In general, participants are assumed to be largely economically rational.
As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e.
making higher estimates for the adverse impacts.

LoopringCoin V2 4

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset LoopringCoin V2 /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 421.41786| kWh/a

Qualitative information

S.4 Consensus Mechanism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.
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S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Synthetix Network @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Synthetix Network /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 325.39781| kWh/a

Qualitative information

S.4 Consensus Mechanism

Synthetix Network is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Fantom, Near Protocol, Optimism, Polygon, Solana.
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The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being

Sustainability indicators according to MiCAR 66 (5) 168



selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Fantom operates on the Lachesis Protocol, an Asynchronous Byzantine Fault Tolerant (aBFT)
consensus mechanism designed for fast, secure, and scalable transactions.

Core Components of Fantom's Consensus:

1. Lachesis Protocol (aBFT):

- Asynchronous and Leaderless: Lachesis allows nodes to reach consensus independently without
relying on a central leader, enhancing decentralization and speed.

- DAG Structure: Instead of a linear blockchain, Lachesis uses a Directed Acyclic Graph (DAG)
structure, allowing multiple transactions to be processed in parallel across nodes. This
structure supports high throughput, making the network suitable for applications requiring
rapid transaction processing.

2. Event Blocks and Instant Finality:

- Event Blocks: Transactions are grouped into event blocks, which are validated asynchronously by
multiple validators. When enough validators confirm an event block, it becomes part of the
Fantom network's history.

- Instant Finality: Transactions on Fantom achieve immediate finality, meaning they are confirmed
and cannot be reversed. This property is ideal for applications requiring fast and irreversible
transactions.
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The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
- State Commitments: The state of these transactions is periodically committed to the Ethereum
main chain.
2. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering transactions and creating
batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to
Ethereum.
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3. Fraud Proofs:
- Assumption of Validity: Transactions are assumed to be valid by default.
- Challenge Period: A specific time window during which anyone can challenge a transaction by
submitting a fraud proof.
- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to
determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized.

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches.

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state.

3. State Commitment: The updated state and the batch of transactions are periodically committed
to the Ethereum main chain. This is done by posting the state root (a cryptographic hash
representing the state) and transaction data as calldata on Ethereum.

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid.

- Interactive Verification: The dispute is resolved through an interactive verification game, which
involves breaking down the transaction into smaller steps to identify the exact point of fraud.

- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses
their staked collateral as a penalty.

5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.
This means the transactions are accepted as valid, and the state updates are permanent.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:

Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:
Transactions are first validated by validators who have staked MATIC tokens. These validators
confirm the validity of transactions and include them in blocks.
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2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.
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Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Synthetix Network is present on the following networks: Avalanche, Binance Smart Chain, Ethereum,
Fantom, Near Protocol, Optimism, Polygon, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.
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Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:
- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

Sustainability indicators according to MiCAR 66 (5) 174



2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Fantom'’s incentive model promotes network security through staking rewards, transaction fees, and
delegation options, encouraging broad participation.
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Incentive Mechanisms:

1. Staking Rewards for Validators:

- Earning Rewards in FTM: Validators who participate in the consensus process earn rewards in
FTM tokens, proportional to the amount they have staked. This incentivizes validators to actively
secure the network.

- Dynamic Staking Rate: Fantom'’s staking reward rate is dynamic, adjusting based on total FTM
staked across the network. As more FTM is staked, individual rewards may decrease,
maintaining a balanced reward structure that supports long-term network security.

2. Delegation for Token Holders:

Delegated Staking: Users who do not operate validator nodes can delegate their FTM tokens to
validators. In return, they share in the staking rewards, encouraging wider participation in
securing the network.

Applicable Fees:

- Transaction Fees in FTM: Users pay transaction fees in FTM tokens. The network’s high throughput
and DAG structure keep fees low, making Fantom ideal for decentralized applications (dApps)
requiring frequent transactions.

- Efficient Fee Model: The low fees and scalability of the network make it cost-effective for users,
fostering a favorable environment for high-volume applications.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.
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2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

1. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-
chain. They play a critical role in maintaining the efficiency and speed of the network.

- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize
sequencers to process transactions quickly and accurately.

2. Validators and Fraud Proofs:

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by
submitting a fraud proof during a specified challenge period. This mechanism ensures that
invalid transactions are detected and reverted.

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions. This incentivizes participants to actively monitor the network for invalid
transactions, thereby enhancing security.

3. Economic Penalties:

- Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully
challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior.

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.

Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees:

- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.
These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the
overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum.

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions.
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3. Smart Contract Fees:
Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based
on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.

- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of

transactions, which are periodically batched and committed to the Ethereum main chain. Fees
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associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:

Sustainability indicators according to MiCAR 66 (5) 179



To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart _chain, ethereum, fantom, near_protocol, optimism, polygon, solana is
calculated first. For the energy consumption of the token, a fraction of the energy consumption of
the network is attributed to the token, which is determined based on the activity of the crypto-asset
within the network. When calculating the energy consumption, the Functionally Fungible Group
Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset
in scope. The mappings are updated regularly, based on data of the Digital Token Identifier
Foundation. The information regarding the hardware used and the number of participants in the
network is based on assumptions that are verified with best effort using empirical data. In general,
participants are assumed to be largely economically rational. As a precautionary principle, we make
assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse
impacts.

Basic Attention Token Q

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Basic Attention Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 293.51443| kWh/a

Qualitative information

S.4 Consensus Mechanism

Basic Attention Token is present on the following networks: Avalanche, Binance Smart Chain,
Ethereum, Gnosis Chain, Near Protocol, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:

- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.

- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.

- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.

- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
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2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members"): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network's security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
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and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into

multiple shards, enabling parallel processing of transactions across the network, thus
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significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible

for bundling the validated transactions into a block. The leader validator uses the PoH
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sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.
4. Consensus and Finalization:
Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees

Basic Attention Token is present on the following networks: Avalanche, Binance Smart Chain,
Ethereum, Gnosis Chain, Near Protocol, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.
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Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:

- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.

- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.

2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.
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4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.

Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.
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- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.

Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.
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4. Reserve Requirement:
Users must maintain a minimum account balance and reserves for data storage, encouraging
efficient use of resources and preventing spam attacks.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies

The energy consumption of this asset is aggregated across multiple components:
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To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, binance_smart_chain, ethereum, gnosis_chain, near_protocol, solana is calculated first.
For the energy consumption of the token, a fraction of the energy consumption of the network is
attributed to the token, which is determined based on the activity of the crypto-asset within the
network. When calculating the energy consumption, the Functionally Fungible Group Digital Token
Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The
mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.

Optimism @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Optimism /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 263.51246| kWh/a

Qualitative information

S.4 Consensus Mechanism

Optimism is a Layer 2 scaling solution for Ethereum that uses Optimistic Rollups to increase
transaction throughput and reduce costs while inheriting the security of the Ethereum main chain.

Core Components:

1. Optimistic Rollups:
- Rollup Blocks: Transactions are batched into rollup blocks and processed off-chain.
- State Commitments: The state of these transactions is periodically committed to the Ethereum
main chain.
2. Sequencers:
- Transaction Ordering: Sequencers are responsible for ordering transactions and creating
batches.
- State Updates: Sequencers update the state of the rollup and submit these updates to the
Ethereum main chain.
- Block Production: They construct and execute Layer 2 blocks, which are then posted to
Ethereum.
3. Fraud Proofs:
- Assumption of Validity: Transactions are assumed to be valid by default.
- Challenge Period: A specific time window during which anyone can challenge a transaction by
submitting a fraud proof.
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- Dispute Resolution: If a transaction is challenged, an interactive verification game is played to
determine its validity. If fraud is detected, the invalid state is rolled back, and the dishonest
participant is penalized.

Consensus Process:

1. Transaction Submission: Users submit transactions to the sequencer, which orders them into
batches.

2. Batch Processing: The sequencer processes these transactions off-chain, updating the Layer 2
state.

3. State Commitment: The updated state and the batch of transactions are periodically committed
to the Ethereum main chain. This is done by posting the state root (a cryptographic hash
representing the state) and transaction data as calldata on Ethereum.

4. Fraud Proofs and Challenges: Once a batch is posted, there is a challenge period during which
anyone can submit a fraud proof if they believe a transaction is invalid.

- Interactive Verification: The dispute is resolved through an interactive verification game, which
involves breaking down the transaction into smaller steps to identify the exact point of fraud.

- Rollbacks and Penalties: If fraud is proven, the batch is rolled back, and the dishonest actor loses
their staked collateral as a penalty.

5. Finality: After the challenge period, if no fraud proof is submitted, the batch is considered final.
This means the transactions are accepted as valid, and the state updates are permanent.

S.5 Incentive Mechanisms and Applicable Fees

Optimism, an Ethereum Layer 2 scaling solution, uses Optimistic Rollups to increase transaction
throughput and reduce costs while maintaining security and decentralization.

Incentive Mechanisms:

1. Sequencers:

- Transaction Ordering: Sequencers are responsible for ordering and batching transactions off-
chain. They play a critical role in maintaining the efficiency and speed of the network.

- Economic Incentives: Sequencers earn transaction fees from users. These fees incentivize
sequencers to process transactions quickly and accurately.

2. Validators and Fraud Proofs:

- Assumption of Validity: In Optimistic Rollups, transactions are assumed to be valid by default.
This allows for quick transaction finality.

- Challenge Mechanism: Validators (or anyone) can challenge the validity of a transaction by
submitting a fraud proof during a specified challenge period. This mechanism ensures that
invalid transactions are detected and reverted.

- Challenge Rewards: Successful challengers are rewarded for identifying and proving fraudulent
transactions. This incentivizes participants to actively monitor the network for invalid
transactions, thereby enhancing security.

3. Economic Penalties:

- Fraud Proof Penalties: If a sequencer includes an invalid transaction and it is successfully
challenged, they face economic penalties, such as losing a portion of their staked collateral. This
discourages dishonest behavior.

- Inactivity and Misbehavior: Validators and sequencers are also incentivized to remain active and
behave correctly, as inactivity or misbehavior can lead to penalties and loss of rewards.
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Fees Applicable on the Optimism Layer 2 Protocol:

1. Transaction Fees:

- Layer 2 Transaction Fees: Users pay fees for transactions processed on the Layer 2 network.
These fees are generally lower than Ethereum mainnet fees due to the reduced computational
load on the main chain.

- Cost Efficiency: By batching multiple transactions into a single batch, Optimism reduces the
overall cost per transaction, making it more economical for users.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee known as the L1 data fee, which
covers the gas cost of publishing these state updates on Ethereum.

- Cost Sharing: The fixed costs of posting state updates to Ethereum are spread across multiple
transactions within a batch, reducing the cost burden on individual transactions.

3. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts on Optimism are based
on the computational resources required. This ensures that users are charged proportionally
for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
optimism is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Enjin @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Enjin /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 251.85328| kWh/a
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Qualitative information

S.4 Consensus Mechanism
Enjin is present on the following networks: Ethereum, Solana.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:

Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network's criteria, such as having correct signatures and
sufficient funds.

2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.
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4. Consensus and Finalization:
Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees
Enjin is present on the following networks: Ethereum, Solana.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.
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2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain

Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum, solana is calculated first. For the energy consumption of the token, a fraction of the
energy consumption of the network is attributed to the token, which is determined based on the
activity of the crypto-asset within the network. When calculating the energy consumption, the
Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Ox Protocol Token @
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Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Ox Protocol Token /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 227.39668| kWh/a

Qualitative information

S.4 Consensus Mechanism
Ox Protocol Token is present on the following networks: Avalanche, Ethereum, Gnosis Chain, Solana.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
3. Avalanche Protocol:
- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.
- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.
- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

Sustainability indicators according to MiCAR 66 (5) 195



The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

Gnosis Chain - Consensus Mechanism Gnosis Chain employs a dual-layer structure to balance
scalability and security, using Proof of Stake (PoS) for its core consensus and transaction finality.

Core Components:

- Two-Layer Structure Layer 1: Gnosis Beacon Chain The Gnosis Beacon Chain operates on a Proof
of Stake (PoS) mechanism, acting as the security and consensus backbone. Validators stake GNO
tokens on the Beacon Chain and validate transactions, ensuring network security and finality.

- Layer 2: Gnosis xDai Chain processes transactions and dApp interactions, providing high-speed,
low-cost transactions. Layer 2 transaction data is finalized on the Gnosis Beacon Chain, creating
an integrated framework where Layer 1 ensures security and finality, and Layer 2 enhances
scalability. Validator Role and Staking Validators on the Gnosis Beacon Chain stake GNO tokens
and participate in consensus by validating blocks. This setup ensures that validators have an
economic interest in maintaining the security and integrity of both the Beacon Chain (Layer 1) and
the xDai Chain (Layer 2). Cross-Layer Security Transactions on Layer 2 are ultimately finalized on
Layer 1, providing security and finality to all activities on the Gnosis Chain. This architecture allows
Gnosis Chain to combine the speed and cost efficiency of Layer 2 with the security guarantees of
a PoS-secured Layer 1, making it suitable for both high-frequency applications and secure asset
management.

Solana uses a unique combination of Proof of History (PoH) and Proof of Stake (PoS) to achieve high
throughput, low latency, and robust security.

Core Concepts:

1. Proof of History (PoH):

- Time-Stamped Transactions: PoH is a cryptographic technique that timestamps transactions,
creating a historical record that proves that an event has occurred at a specific moment in time.

- Verifiable Delay Function: PoH uses a Verifiable Delay Function (VDF) to generate a unique hash
that includes the transaction and the time it was processed. This sequence of hashes provides
a verifiable order of events, enabling the network to efficiently agree on the sequence of
transactions.

2. Proof of Stake (PoS):

- Validator Selection: Validators are chosen to produce new blocks based on the number of SOL
tokens they have staked. The more tokens staked, the higher the chance of being selected to
validate transactions and produce new blocks.

- Delegation: Token holders can delegate their SOL tokens to validators, earning rewards
proportional to their stake while enhancing the network's security.

Consensus Process:

1. Transaction Validation:
Transactions are broadcast to the network and collected by validators. Each transaction is
validated to ensure it meets the network’s criteria, such as having correct signatures and
sufficient funds.
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2. PoH Sequence Generation:

A validator generates a sequence of hashes using PoH, each containing a timestamp and the
previous hash. This process creates a historical record of transactions, establishing a
cryptographic clock for the network.

3. Block Production:

The network uses PoS to select a leader validator based on their stake. The leader is responsible
for bundling the validated transactions into a block. The leader validator uses the PoH
sequence to order transactions within the block, ensuring that all transactions are processed in
the correct order.

4. Consensus and Finalization:

Other validators verify the block produced by the leader validator. They check the correctness of
the PoH sequence and validate the transactions within the block. Once the block is verified, it is
added to the blockchain. Validators sign off on the block, and it is considered finalized.

Security and Economic Incentives:

1. Incentives for Validators:

- Block Rewards: Validators earn rewards for producing and validating blocks. These rewards are
distributed in SOL tokens and are proportional to the validator's stake and performance.

- Transaction Fees: Validators also earn transaction fees from the transactions included in the
blocks they produce. These fees provide an additional incentive for validators to process
transactions efficiently.

2. Security:

- Staking: Validators must stake SOL tokens to participate in the consensus process. This staking
acts as collateral, incentivizing validators to act honestly. If a validator behaves maliciously or
fails to perform, they risk losing their staked tokens.

- Delegated Staking: Token holders can delegate their SOL tokens to validators, enhancing
network security and decentralization. Delegators share in the rewards and are incentivized to
choose reliable validators.

3. Economic Penalties:

Slashing: Validators can be penalized for malicious behavior, such as double-signing or producing
invalid blocks. This penalty, known as slashing, results in the loss of a portion of the staked
tokens, discouraging dishonest actions.

S.5 Incentive Mechanisms and Applicable Fees
Ox Protocol Token is present on the following networks: Avalanche, Ethereum, Gnosis Chain, Solana.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:

Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked
influences their probability of being selected to propose or validate new blocks.

Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.
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2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

The Gnosis Chain’s incentive and fee models encourage both validator participation and network
accessibility, using a dual-token system to maintain low transaction costs and effective staking
rewards.
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Incentive Mechanisms:

- Staking Rewards for Validators GNO Rewards: Validators earn staking rewards in GNO tokens for
their participation in consensus and securing the network.

- Delegation Model: GNO holders who do not operate validator nodes can delegate their GNO
tokens to validators, allowing them to share in staking rewards and encouraging broader
participation in network security.

- Dual-Token Model GNO: Used for staking, governance, and validator rewards, GNO aligns long-
term network security incentives with token holders’ economic interests.

- xDai: Serves as the primary transaction currency, providing stable and low-cost transactions. The
use of a stable token (xDai) for fees minimizes volatility and offers predictable costs for users and
developers.

Applicable Fees:

Transaction Fees in xDai Users pay transaction fees in xDai, the stable fee token, making costs
affordable and predictable. This model is especially suited for high-frequency applications and
dApps where low transaction fees are essential. xDai transaction fees are redistributed to
validators as part of their compensation, aligning their rewards with network activity. Delegated
Staking Rewards Through delegated staking, GNO holders can earn a share of staking rewards by
delegating their tokens to active validators, promoting user participation in network security
without requiring direct involvement in consensus operations.

Solana uses a combination of Proof of History (PoH) and Proof of Stake (PoS) to secure its network
and validate transactions.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators are chosen based on the number of SOL tokens they have staked.
They earn rewards for producing and validating blocks, which are distributed in SOL. The more
tokens staked, the higher the chances of being selected to validate transactions and produce
new blocks.

- Transaction Fees: Validators earn a portion of the transaction fees paid by users for the
transactions they include in the blocks. This provides an additional financial incentive for
validators to process transactions efficiently and maintain the network's integrity.

2. Delegators:

- Delegated Staking: Token holders who do not wish to run a validator node can delegate their
SOL tokens to a validator. In return, delegators share in the rewards earned by the validators.
This encourages widespread participation in securing the network and ensures
decentralization.

3. Economic Security:

- Slashing: Validators can be penalized for malicious behavior, such as producing invalid blocks or
being frequently offline. This penalty, known as slashing, involves the loss of a portion of their
staked tokens. Slashing deters dishonest actions and ensures that validators act in the best
interest of the network.

- Opportunity Cost: By staking SOL tokens, validators and delegators lock up their tokens, which
could otherwise be used or sold. This opportunity cost incentivizes participants to act honestly
to earn rewards and avoid penalties. Fees Applicable on the Solana Blockchain
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Transaction Fees:

1. Low and Predictable Fees:

Solana is designed to handle a high throughput of transactions, which helps keep fees low and
predictable. The average transaction fee on Solana is significantly lower compared to other
blockchains like Ethereum.

2. Fee Structure:

Fees are paid in SOL and are used to compensate validators for the resources they expend to

process transactions. This includes computational power and network bandwidth.
3. Rent Fees:

State Storage: Solana charges rent fees for storing data on the blockchain. These fees are
designed to discourage inefficient use of state storage and encourage developers to clean up
unused state. Rent fees help maintain the efficiency and performance of the network.

4. Smart Contract Fees:

Execution Costs: Similar to transaction fees, fees for deploying and interacting with smart
contracts on Solana are based on the computational resources required. This ensures that
users are charged proportionally for the resources they consume.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
avalanche, ethereum, gnosis_chain, solana is calculated first. For the energy consumption of the
token, a fraction of the energy consumption of the network is attributed to the token, which is
determined based on the activity of the crypto-asset within the network. When calculating the
energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if
available - to determine all implementations of the asset in scope. The mappings are updated
regularly, based on data of the Digital Token Identifier Foundation. The information regarding the
hardware used and the number of participants in the network is based on assumptions that are
verified with best effort using empirical data. In general, participants are assumed to be largely
economically rational. As a precautionary principle, we make assumptions on the conservative side
when in doubt, i.e. making higher estimates for the adverse impacts.

Wootrade Network @

Quantitative information

Field Value| Unit
S.1 Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset Wootrade Network /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 212.79542| kWh/a
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Qualitative information

S.4 Consensus Mechanism

Wootrade Network is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Near Protocol, Polygon.

Arbitrum is a Layer 2 solution on top of Ethereum that uses Optimistic Rollups to enhance scalability
and reduce transaction costs. It assumes that transactions are valid by default and only verifies
them if there's a challenge (optimistic).

Core Components:

- Sequencer: Orders transactions and creates batches for processing.
- Bridge: Facilitates asset transfers between Arbitrum and Ethereum.
- Fraud Proofs: Protect against invalid transactions through an interactive verification process.

Verification Process:

1. Transaction Submission: Users submit transactions to the Arbitrum Sequencer, which orders and
batches them.

2. State Commitment: These batches are submitted to Ethereum with a state commitment.

3. Challenge Period: Validators have a specific period to challenge the state if they suspect fraud.

4. Dispute Resolution: If a challenge occurs, the dispute is resolved through an iterative process to
identify the fraudulent transaction. The final operation is executed on Ethereum to determine the
correct state.

5. Rollback and Penalties: If fraud is proven, the state is rolled back, and the dishonest party is
penalized.

Security and Efficiency: The combination of the Sequencer, bridge, and interactive fraud proofs
ensures that the system remains secure and efficient. By minimizing on-chain data and leveraging
off-chain computations, Arbitrum can provide high throughput and low fees.

The Avalanche blockchain network employs a unique Proof-of-Stake consensus mechanism called
Avalanche Consensus, which involves three interconnected protocols: Snowball, Snowflake, and
Avalanche.

Avalanche Consensus Process:

1. Snowball Protocol:
- Random Sampling: Each validator randomly samples a small, constant-sized subset of other
validators.
- Repeated Polling: Validators repeatedly poll the sampled validators to determine the preferred
transaction.
- Confidence Counters: Validators maintain confidence counters for each transaction,
incrementing them each time a sampled validator supports their preferred transaction.
- Decision Threshold: Once the confidence counter exceeds a pre-defined threshold, the
transaction is considered accepted.
2. Snowflake Protocol:
- Binary Decision: Enhances the Snowball protocol by incorporating a binary decision process.
Validators decide between two conflicting transactions.
- Binary Confidence: Confidence counters are used to track the preferred binary decision.
- Finality: When a binary decision reaches a certain confidence level, it becomes final.
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3. Avalanche Protocol:

- DAG Structure: Uses a Directed Acyclic Graph (DAG) structure to organize transactions, allowing
for parallel processing and higher throughput.

- Transaction Ordering: Transactions are added to the DAG based on their dependencies,
ensuring a consistent order.

- Consensus on DAG: While most Proof-of-Stake Protocols use a Byzantine Fault Tolerant (BFT)
consensus, Avalanche uses the Avalanche Consensus, Validators reach consensus on the
structure and contents of the DAG through repeated Snowball and Snowflake.

Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority
(PoSA), which combines elements of Delegated Proof of Stake (DP0oS) and Proof of Authority (PoA).
This method ensures fast block times and low fees while maintaining a level of decentralization and
security.

Core Components:

1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new
blocks, validating transactions, and maintaining the network’s security. To become a validator, an
entity must stake a significant amount of BNB (Binance Coin). Validators are selected through
staking and voting by token holders. There are 21 active validators at any given time, rotating to
ensure decentralization and security.

2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens
to validators. This delegation helps validators increase their stake and improves their chances of
being selected to produce blocks. Delegators earn a share of the rewards that validators receive,
incentivizing broad participation in network security.

3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the
pool waiting to become validators. They are essentially potential validators who are not currently
active but can be elected to the validator set through community voting. Candidates play a crucial
role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus
maintaining network resilience and decentralization. Consensus Process

4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received
from delegators. The more BNB staked and votes received, the higher the chance of being
selected to validate transactions and produce new blocks. The selection process involves both the
current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes.

5. Block Production: The selected validators take turns producing blocks in a PoA-like manner,
ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add
them to new blocks, and broadcast these blocks to the network.

6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction
finality. This is achieved through the efficient POSA mechanism that allows validators to rapidly
reach consensus. Security and Economic Incentives

7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to
ensure their honest behavior. This staked amount can be slashed if validators act maliciously.
Staking incentivizes validators to act in the network's best interest to avoid losing their staked
BNB.

8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This
incentivizes them to choose reliable validators and participate in the network’s security. Validators
and delegators share transaction fees as rewards, which provides continuous economic
incentives to maintain network security and performance.

9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for
users. These fees are collected by validators as part of their rewards, further incentivizing them to
validate transactions accurately and efficiently.
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The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

The NEAR Protocol uses a unique consensus mechanism combining Proof of Stake (PoS) and a
novel approach called Doomslug, which enables high efficiency, fast transaction processing, and
secure finality in its operations.

Core Concepts:

1. Doomslug and Proof of Stake:

- NEAR's consensus mechanism primarily revolves around PoS, where validators stake NEAR
tokens to participate in securing the network. However, NEAR's implementation is enhanced
with the Doomslug protocol.

- Doomslug allows the network to achieve fast block finality by requiring blocks to be confirmed in
two stages. Validators propose blocks in the first step, and finalization occurs when two-thirds
of validators approve the block, ensuring rapid transaction confirmation.

2. Sharding with Nightshade:

- NEAR uses a dynamic sharding technique called Nightshade. This method splits the network into
multiple shards, enabling parallel processing of transactions across the network, thus
significantly increasing throughput. Each shard processes a portion of transactions, and the
outcomes are merged into a single "snapshot" block.

- This sharding approach ensures scalability, allowing the network to grow and handle increasing
demand efficiently.

Consensus Process:

1. Validator Selection:

- Validators are selected to propose and validate blocks based on the amount of NEAR tokens
staked. This selection process is designed to ensure that only validators with significant stakes
and community trust participate in securing the network.

2. Transaction Finality:

- NEAR achieves transaction finality through its PoS-based system, where validators vote on
blocks. Once two-thirds of validators approve a block, it reaches finality under Doomslug,
meaning that no forks can alter the confirmed state.

3. Epochs and Rotation:

- Validators are rotated in epochs to ensure fairness and decentralization. Epochs are intervals in
which validators are reshuffled, and new block proposers are selected, ensuring a balance
between performance and decentralization.

Polygon, formerly known as Matic Network, is a Layer 2 scaling solution for Ethereum that employs a
hybrid consensus mechanism. Here's a detailed explanation of how Polygon achieves consensus:
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Core Concepts:

1. Proof of Stake (PoS):

- Validator Selection: Validators on the Polygon network are selected based on the number of
MATIC tokens they have staked. The more tokens staked, the higher the chance of being
selected to validate transactions and produce new blocks.

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to validators. Delegators share in the rewards earned by validators.

2. Plasma Chains:

- Off-Chain Scaling: Plasma is a framework for creating child chains that operate alongside the
main Ethereum chain. These child chains can process transactions off-chain and submit only
the final state to the Ethereum main chain, significantly increasing throughput and reducing
congestion.

- Fraud Proofs: Plasma uses a fraud-proof mechanism to ensure the security of off-chain
transactions. If a fraudulent transaction is detected, it can be challenged and reverted.

Consensus Process:

1. Transaction Validation:

Transactions are first validated by validators who have staked MATIC tokens. These validators

confirm the validity of transactions and include them in blocks.
2. Block Production:

- Proposing and Voting: Validators propose new blocks based on their staked tokens and
participate in a voting process to reach consensus on the next block. The block with the
majority of votes is added to the blockchain.

- Checkpointing: Polygon uses periodic checkpointing, where snapshots of the Polygon sidechain
are submitted to the Ethereum main chain. This process ensures the security and finality of
transactions on the Polygon network.

3. Plasma Framework:

- Child Chains: Transactions can be processed on child chains created using the Plasma
framework. These transactions are validated off-chain and only the final state is submitted to
the Ethereum main chain.

- Fraud Proofs: If a fraudulent transaction occurs, it can be challenged within a certain period
using fraud proofs. This mechanism ensures the integrity of off-chain transactions.

Security and Economic Incentives:

1. Incentives for Validators:

- Staking Rewards: Validators earn rewards for staking MATIC tokens and participating in the
consensus process. These rewards are distributed in MATIC tokens and are proportional to the
amount staked and the performance of the validator.

- Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This
provides an additional financial incentive to maintain the network’s integrity and efficiency.

2. Delegation:

Shared Rewards: Delegators earn a share of the rewards earned by the validators they delegate
to. This encourages more token holders to participate in securing the network by choosing
reliable validators.

3. Economic Security:

Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. This
penalty, known as slashing, involves the loss of a portion of their staked tokens, ensuring that
validators act in the best interest of the network.
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S.5 Incentive Mechanisms and Applicable Fees

Wootrade Network is present on the following networks: Arbitrum, Avalanche, Binance Smart Chain,
Ethereum, Near Protocol, Polygon.

Arbitrum One, a Layer 2 scaling solution for Ethereum, employs several incentive mechanisms to
ensure the security and integrity of transactions on its network. The key mechanisms include:

1. Validators and Sequencers:

- Sequencers are responsible for ordering transactions and creating batches that are processed
off-chain. They play a critical role in maintaining the efficiency and throughput of the network.

- Validators monitor the sequencers' actions and ensure that transactions are processed
correctly. Validators verify the state transitions and ensure that no invalid transactions are
included in the batches.

2. Fraud Proofs:

- Assumption of Validity: Transactions processed off-chain are assumed to be valid. This allows for
quick transaction finality and high throughput.

- Challenge Period: There is a predefined period during which anyone can challenge the validity of
a transaction by submitting a fraud proof. This mechanism acts as a deterrent against malicious
behavior.

- Dispute Resolution: If a challenge is raised, an interactive verification process is initiated to
pinpoint the exact step where fraud occurred. If the challenge is valid, the fraudulent
transaction is reverted, and the dishonest actor is penalized.

3. Economic Incentives:

- Rewards for Honest Behavior: Participants in the network, such as validators and sequencers,
are incentivized through rewards for performing their duties honestly and efficiently. These
rewards come from transaction fees and potentially other protocol incentives.

- Penalties for Malicious Behavior: Participants who engage in dishonest behavior or submit
invalid transactions are penalized. This can include slashing of staked tokens or other forms of
economic penalties, which serve to discourage malicious actions.

Fees on the Arbitrum One Blockchain

1. Transaction Fees:

- Layer 2 Fees: Users pay fees for transactions processed on the Layer 2 network. These fees are
typically lower than Ethereum mainnet fees due to the reduced computational load on the
main chain.

- Arbitrum Transaction Fee: A fee is charged for each transaction processed by the sequencer.
This fee covers the cost of processing the transaction and ensuring its inclusion in a batch.

2. L1 Data Fees:

- Posting Batches to Ethereum: Periodically, the state updates from the Layer 2 transactions are
posted to the Ethereum mainnet as calldata. This involves a fee, known as the L1 data fee,
which accounts for the gas required to publish these state updates on Ethereum.

- Cost Sharing: Because transactions are batched, the fixed costs of posting state updates to
Ethereum are spread across multiple transactions, making it more cost-effective for users.

Avalanche uses a consensus mechanism known as Avalanche Consensus, which relies on a
combination of validators, staking, and a novel approach to consensus to ensure the network's
security and integrity.

1. Validators:
Staking: Validators on the Avalanche network are required to stake AVAX tokens. The amount staked

influences their probability of being selected to propose or validate new blocks.
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Rewards: Validators earn rewards for their participation in the consensus process. These rewards
are proportional to the amount of AVAX staked and their uptime and performance in validating
transactions.

Delegation: Validators can also accept delegations from other token holders. Delegators share in
the rewards based on the amount they delegate, which incentivizes smaller holders to participate
indirectly in securing the network.

2. Economic Incentives:

Block Rewards: Validators receive block rewards for proposing and validating blocks. These rewards
are distributed from the network’s inflationary issuance of AVAX tokens.

Transaction Fees: Validators also earn a portion of the transaction fees paid by users. This includes
fees for simple transactions, smart contract interactions, and the creation of new assets on the
network.

3. Penalties:

- Slashing: Unlike some other PoS systems, Avalanche does not employ slashing (i.e., the
confiscation of staked tokens) as a penalty for misbehavior.Instead, the network relies on the
financial disincentive of lost future rewards for validators who are not consistently online or act
maliciously.

- Uptime Requirements: Validators must maintain a high level of uptime and correctly validate
transactions to continue earning rewards. Poor performance or malicious actions result in missed
rewards, providing a strong economic incentive to act honestly.

Fees on the Avalanche Blockchain

1. Transaction Fees:

- Dynamic Fees: Transaction fees on Avalanche are dynamic, varying based on network demand
and the complexity of the transactions. This ensures that fees remain fair and proportional to
the network's usage.

- Fee Burning: A portion of the transaction fees is burned, permanently removing them from
circulation. This deflationary mechanism helps to balance the inflation from block rewards and
incentivizes token holders by potentially increasing the value of AVAX over time.

2. Smart Contract Fees:

Execution Costs: Fees for deploying and interacting with smart contracts are determined by the
computational resources required. These fees ensure that the network remains efficient and
that resources are used responsibly.

3. Asset Creation Fees:

New Asset Creation: There are fees associated with creating new assets (tokens) on the Avalanche
network. These fees help to prevent spam and ensure that only serious projects use the
network's resources.

Binance Smart Chain (BSC) uses the Proof of Staked Authority (POSA) consensus mechanism to
ensure network security and incentivize participation from validators and delegators.

Incentive Mechanisms

1. Validators:
- Staking Rewards: Validators must stake a significant amount of BNB to participate in the
consensus process. They earn rewards in the form of transaction fees and block rewards.
- Selection Process: Validators are selected based on the amount of BNB staked and the votes
received from delegators. The more BNB staked and votes received, the higher the chances of
being selected to validate transactions and produce new blocks.
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2. Delegators:

- Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases
the validator's total stake and improves their chances of being selected to produce blocks.

- Shared Rewards: Delegators earn a portion of the rewards that validators receive. This
incentivizes token holders to participate in the network's security and decentralization by
choosing reliable validators.

3. Candidates:

Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB
and are waiting to become active validators. They ensure that there is always a sufficient pool of
nodes ready to take on validation tasks, maintaining network resilience.

4. Economic Security:

- Slashing: Validators can be penalized for malicious behavior or failure to perform their duties.
Penalties include slashing a portion of their staked tokens, ensuring that validators act in the
best interest of the network.

- Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens,
providing an economic incentive to act honestly to avoid losing their staked assets.

Fees on the Binance Smart Chain

1. Transaction Fees:

- Low Fees: BSC is known for its low transaction fees compared to other blockchain networks.
These fees are paid in BNB and are essential for maintaining network operations and
compensating validators.

- Dynamic Fee Structure: Transaction fees can vary based on network congestion and the
complexity of the transactions. However, BSC ensures that fees remain significantly lower than
those on the Ethereum mainnet.

2. Block Rewards:

Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These
rewards are distributed to validators for their role in maintaining the network and processing
transactions.

3. Cross-Chain Fees:

Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred
between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal
fees, facilitating seamless asset transfers and improving user experience.

4. Smart Contract Fees:

Deploying and interacting with smart contracts on BSC involves paying fees based on the
computational resources required. These fees are also paid in BNB and are designed to be
cost-effective, encouraging developers to build on the BSC platform.

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

NEAR Protocol employs several economic mechanisms to secure the network and incentivize
participation.
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Incentive Mechanisms to Secure Transactions:

1. Staking Rewards:

Validators and delegators secure the network by staking NEAR tokens. Validators earn around 5%
annual inflation, with 90% of newly minted tokens distributed as staking rewards. Validators
propose blocks, validate transactions, and receive a share of these rewards based on their
staked tokens. Delegators earn rewards proportional to their delegation, encouraging broad
participation.

2. Delegation:

Token holders can delegate their NEAR tokens to validators to increase the validator's stake and
improve the chances of being selected to validate transactions. Delegators share in the
validator's rewards based on their delegated tokens, incentivizing users to support reliable
validators.

3. Slashing and Economic Penalties:

Validators face penalties for malicious behavior, such as failing to validate correctly or acting
dishonestly. The slashing mechanism enforces security by deducting a portion of their staked
tokens, ensuring validators follow the network's best interests.

4. Epoch Rotation and Validator Selection:

Validators are rotated regularly during epochs to ensure fairness and prevent centralization. Each

epoch reshuffles validators, allowing the protocol to balance decentralization with performance.

Fees on the NEAR Blockchain:

1. Transaction Fees:

Users pay fees in NEAR tokens for transaction processing, which are burned to reduce the total
circulating supply, introducing a potential deflationary effect over time. Validators also receive a
portion of transaction fees as additional rewards, providing an ongoing incentive for network
maintenance.

2. Storage Fees:

NEAR Protocol charges storage fees based on the amount of blockchain storage consumed by
accounts, contracts, and data. This requires users to hold NEAR tokens as a deposit
proportional to their storage usage, ensuring the efficient use of network resources.

3. Redistribution and Burning:

A portion of the transaction fees (burned NEAR tokens) reduces the overall supply, while the rest
is distributed to validators as compensation for their work. The burning mechanism helps
maintain long-term economic sustainability and potential value appreciation for NEAR holders.

4. Reserve Requirement:

Users must maintain a minimum account balance and reserves for data storage, encouraging

efficient use of resources and preventing spam attacks.

Polygon uses a combination of Proof of Stake (PoS) and the Plasma framework to ensure network
security, incentivize participation, and maintain transaction integrity.

Incentive Mechanisms:

1. Validators:

- Staking Rewards: Validators on Polygon secure the network by staking MATIC tokens. They are
selected to validate transactions and produce new blocks based on the number of tokens they
have staked. Validators earn rewards in the form of newly minted MATIC tokens and transaction
fees for their services.

- Block Production: Validators are responsible for proposing and voting on new blocks. The
selected validator proposes a block, and other validators verify and validate it. Validators are
incentivized to act honestly and efficiently to earn rewards and avoid penalties.
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- Checkpointing: Validators periodically submit checkpoints to the Ethereum main chain, ensuring
the security and finality of transactions processed on Polygon. This provides an additional layer
of security by leveraging Ethereum's robustness.

2. Delegators:

- Delegation: Token holders who do not wish to run a validator node can delegate their MATIC
tokens to trusted validators. Delegators earn a portion of the rewards earned by the validators,
incentivizing them to choose reliable and performant validators.

- Shared Rewards: Rewards earned by validators are shared with delegators, based on the
proportion of tokens delegated. This system encourages widespread participation and
enhances the network's decentralization.

3. Economic Security:

- Slashing: Validators can be penalized through a process called slashing if they engage in
malicious behavior or fail to perform their duties correctly. This includes double-signing or
going offline for extended periods. Slashing results in the loss of a portion of the staked tokens,
acting as a strong deterrent against dishonest actions.

- Bond Requirements: Validators are required to bond a significant amount of MATIC tokens to
participate in the consensus process, ensuring they have a vested interest in maintaining
network security and integrity. Fees on the Polygon Blockchain

4. Transaction Fees:

- Low Fees: One of Polygon's main advantages is its low transaction fees compared to the
Ethereum main chain. The fees are paid in MATIC tokens and are designed to be affordable to
encourage high transaction throughput and user adoption.

- Dynamic Fees: Fees on Polygon can vary depending on network congestion and transaction
complexity. However, they remain significantly lower than those on Ethereum, making Polygon
an attractive option for users and developers.

5. Smart Contract Fees:

Deployment and Execution Costs: Deploying and interacting with smart contracts on Polygon
incurs fees based on the computational resources required. These fees are also paid in MATIC
tokens and are much lower than on Ethereum, making it cost-effective for developers to build
and maintain decentralized applications (dApps) on Polygon.

6. Plasma Framework:

State Transfers and Withdrawals: The Plasma framework allows for off-chain processing of
transactions, which are periodically batched and committed to the Ethereum main chain. Fees
associated with these processes are also paid in MATIC tokens, and they help reduce the
overall cost of using the network.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
arbitrum, avalanche, binance_smart_chain, ethereum, near_protocol, polygon is calculated first. For
the energy consumption of the token, a fraction of the energy consumption of the network is
attributed to the token, which is determined based on the activity of the crypto-asset within the
network. When calculating the energy consumption, the Functionally Fungible Group Digital Token
Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The
mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The
information regarding the hardware used and the number of participants in the network is based
on assumptions that are verified with best effort using empirical data. In general, participants are
assumed to be largely economically rational. As a precautionary principle, we make assumptions on
the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
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Quantitative information

Field Value| Unit
S.1T Name Smartbroker AG /
S.2 Relevant legal entity identifier 391200NOBYCZF2F43264 /
S.3 Name of the crypto-asset StorjToken /
S.6 Beginning of the period to which the disclosure relates 2024-07-24 /
S.7 End of the period to which the disclosure relates 2025-07-24 /
S.8 Energy consumption 177.87657| kWh/a

Qualitative information

S.4 Consensus Mechahism

The crypto-asset's Proof-of-Stake (PoS) consensus mechanism, introduced with The Merge in 2022,
replaces mining with validator staking. Validators must stake at least 32 ETH every block a validator
is randomly chosen to propose the next block. Once proposed the other validators verify the blocks
integrity.

The network operates on a slot and epoch system, where a new block is proposed every 12
seconds, and finalization occurs after two epochs (~12.8 minutes) using Casper-FFG. The Beacon
Chain coordinates validators, while the fork-choice rule (LMD-GHOST) ensures the chain follows the
heaviest accumulated validator votes. Validators earn rewards for proposing and verifying blocks,
but face slashing for malicious behavior or inactivity. PoS aims to improve energy efficiency, security,
and scalability, with future upgrades like Proto-Danksharding enhancing transaction efficiency.

S.5 Incentive Mechanisms and Applicable Fees

The crypto-asset's PoS system secures transactions through validator incentives and economic
penalties. Validators stake at least 32 ETH and earn rewards for proposing blocks, attesting to valid
ones, and participating in sync committees. Rewards are paid in newly issued ETH and transaction
fees.

Under EIP-1559, transaction fees consist of a base fee, which is burned to reduce supply, and an
optional priority fee (tip) paid to validators. Validators face slashing if they act maliciously and incur
penalties for inactivity.

This system aims to increase security by aligning incentives while making the crypto-asset's fee
structure more predictable and deflationary during high network activity.

S.9 Energy consumption sources and methodologies
The energy consumption of this asset is aggregated across multiple components:

To determine the energy consumption of a token, the energy consumption of the network(s)
ethereum is calculated first. For the energy consumption of the token, a fraction of the energy
consumption of the network is attributed to the token, which is determined based on the activity of
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the crypto-asset within the network. When calculating the energy consumption, the Functionally
Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all
implementations of the asset in scope. The mappings are updated regularly, based on data of the
Digital Token Identifier Foundation. The information regarding the hardware used and the number
of participants in the network is based on assumptions that are verified with best effort using
empirical data. In general, participants are assumed to be largely economically rational. As a
precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making
higher estimates for the adverse impacts.

Sustainability indicators according to MiCAR 66 (5) 211



I CRYPTO RISK METRICS

DON'T TRUST. VERIFY.

This report was provided by:

Crypto
Risk
Metrics

The IDW PS 951-certified SaaS tool “Crypto Risk Metrics” supports regulated
financial institutions in the risk-based assessment of cryptocurrencies, Delta-1
Certificates (“Crypto ETPs”) and tokenized securities. ESG data, market

conformity checks and KARBV-compliant price data complete the product
range.

As a professional compliance expert, we provide support with:

ESG data for White Papers for
crypto-assets crypto-assets
Risk Compliant
management price data

Market

conformity check



	Sustainability  indicators for  crypto-assets
	Disclosures in accordance with Article 66 (5) MiCAR.
	Table of Content
	Preamble
	About the Crypto Asset Service Provider (CASP)
	About this report

	Overview
	Sustainability indicators
	Bitcoin
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Dogecoin
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Litecoin
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Bitcoin Cash
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Solana SOL
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Ethereum Eth
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	NEAR Protocol
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Avalanche AVAX
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Cardano ADA
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Polkadot DOT
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies
	S.15 Key energy sources and methodologies
	S.16 Key GHG sources and methodologies


	Algorand
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Sui
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Ripple XRP
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Injective Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Polygon POL
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Fantom
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Stellar Lumen
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Chiliz
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	ChainLink Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Curve DAO Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Uniswap
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	SHIBA INU
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Aave Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Axie Infinity Shard
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	1INCH Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Arbitrum
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Gala
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	ApeCoin
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Immutable X
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Maker
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Graph Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	SAND
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Compound
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	SushiSwap
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Decentraland
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	LoopringCoin V2
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Synthetix Network
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Basic Attention Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Optimism
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Enjin
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	0x Protocol Token
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	Wootrade Network
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies


	StorjToken
	Quantitative information
	Qualitative information
	S.4 Consensus Mechanism
	S.5 Incentive Mechanisms and Applicable Fees
	S.9 Energy consumption sources and methodologies





